This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Mor...This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Morse reservoirs) from Indiana, USA. The re- sults showed that he absorption coefficient aCDOM(440) ranged from 0.37 m-1 to 3.93 m-1 with an average of 1.89 ± 0.76 m-1 (±SD) for the aggregated dataset, and S varied from 0.0048 nm -1 to 0.0239 nm-1 with an average of 0.0108 ±0.0040 nmI. A significant relation- ship between S and aCDOM(440) can be fitted with a power equation (S = 0.013 × aCDOM(440)-0.42, R2 = 0.612), excluding data from Geist Reservoir during high flow (12 April 2010) and the Morse Reservoir on 25 June 2010 due to a T-storm achieves even higher determina- tion coefficient (R2 = 0.842). Correlation analysis indicated that aCDOM(440) has strong association with inorganic suspended matter (ISM) concentration (0.231 〈 R2 〈 0.786) for each of the field surveys, and this trend followed the aggregated datasets (R2 = 0.447, p 〈 0.001). In contrast, chlorophyll-a was only correlated with aCDOM(440) in summer and autumn (0.081 〈 R2 〈 0.763), indicating that CDOM is mainly from terrigenous sources in early spring and that phytoplankton contributed during the algal blooming season. The S value was used to characterize CDOM origin. The results indicate that the CDOM source is mainly controlled by hydrological varia- tions, while phytoplankton originated organic matter also closely linked with CDOM dynamics in three productive reservoirs.展开更多
Rapid developments in both fundamental science and modern technology that target water-related problems, including the physical nature of our planet and environment, the origin of life, energy production via water spl...Rapid developments in both fundamental science and modern technology that target water-related problems, including the physical nature of our planet and environment, the origin of life, energy production via water splitting, and water purification, all call for a molecular-level understanding of water. This invokes relentless efforts to further our understanding of the basic science of water. Current challenges to achieve a molecular picture of the peculiar properties and behavior of water are discussed herein, with a particular focus on the structure and dynamics of bulk and surface water, the molecular mechanisms of water wetting and splitting, application-oriented research on water decontamination and desalination, and the development of complementary techniques for probing water at the nanoscale.展开更多
基金Under the auspices of National Aeronautics and Space Administration of US(NASA)(No.NNG06GA92G)National Natural Science Foundation of China(No.41171293)
文摘This study examined the spatiotemporal dynamics of colored dissolved organic matter (CDOM) and spectral slope (S), and further to analyze its sources in three productive water supplies (Eagle Creek, Geist and Morse reservoirs) from Indiana, USA. The re- sults showed that he absorption coefficient aCDOM(440) ranged from 0.37 m-1 to 3.93 m-1 with an average of 1.89 ± 0.76 m-1 (±SD) for the aggregated dataset, and S varied from 0.0048 nm -1 to 0.0239 nm-1 with an average of 0.0108 ±0.0040 nmI. A significant relation- ship between S and aCDOM(440) can be fitted with a power equation (S = 0.013 × aCDOM(440)-0.42, R2 = 0.612), excluding data from Geist Reservoir during high flow (12 April 2010) and the Morse Reservoir on 25 June 2010 due to a T-storm achieves even higher determina- tion coefficient (R2 = 0.842). Correlation analysis indicated that aCDOM(440) has strong association with inorganic suspended matter (ISM) concentration (0.231 〈 R2 〈 0.786) for each of the field surveys, and this trend followed the aggregated datasets (R2 = 0.447, p 〈 0.001). In contrast, chlorophyll-a was only correlated with aCDOM(440) in summer and autumn (0.081 〈 R2 〈 0.763), indicating that CDOM is mainly from terrigenous sources in early spring and that phytoplankton contributed during the algal blooming season. The S value was used to characterize CDOM origin. The results indicate that the CDOM source is mainly controlled by hydrological varia- tions, while phytoplankton originated organic matter also closely linked with CDOM dynamics in three productive reservoirs.
基金We thank discussion and help from Chongqin Zhu and Dr. Hui Li, Dr. Z. X. Cao, and Dr. Y. Luo during manuscript preparation. Financial support from NIST, the National Basic Research Program of China (No. 2012CB921403) and the National Natural Science Foundationof China (Nos. 11474328, 11290164, and 11222431) and CAS are gratefully acknowledged.
文摘Rapid developments in both fundamental science and modern technology that target water-related problems, including the physical nature of our planet and environment, the origin of life, energy production via water splitting, and water purification, all call for a molecular-level understanding of water. This invokes relentless efforts to further our understanding of the basic science of water. Current challenges to achieve a molecular picture of the peculiar properties and behavior of water are discussed herein, with a particular focus on the structure and dynamics of bulk and surface water, the molecular mechanisms of water wetting and splitting, application-oriented research on water decontamination and desalination, and the development of complementary techniques for probing water at the nanoscale.