Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematica...Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production.展开更多
To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied pha...To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied phase. As for the embodied phase, with the data in existing statistic yearbook, the consumption items of energy production and transportation were investigated. And based on the life cycle theory, an embodied coefficient of energy carriers was proposed to quantify the embodied energy consumption. Moreover, a calculation method for the embodied coefficient of energy carriers was deduced using Leontief inverse matrix based on the existing data sources. With relevant data of 2005-2007 in China, the embodied coefficients in 2005-2007 were obtained, in which the values for natural gas and thermal power are around 1.3 and 3. l, respectively; while they are 1.03-1.08 for other selected energy carriers. In addition, it is also found that the consumption in the production and processing accounts for more than 75%.展开更多
A short presentation of chemical engineering evolution,as guided by its paradigms,is exposed.The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industri...A short presentation of chemical engineering evolution,as guided by its paradigms,is exposed.The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industrial applications at the end of 19th century.The birth in the late 1950s of the second paradigm–transport phenomena–was the consequence of the need for a deep,scienti fic knowledge of the phenomena that explain what happens inside of unit operations.In the second part of 20th century,the importance of chemical product properties and qualities has become essentially in the market fights.Accordingly,it was required with additional and even new fundamental approaches,and product engineering was recognized as the third paradigm.Nowadays chemical industry,as a huge materials and energy consumer,and with a strong ecological impact,couldn't remain outside of sustainability requirements.The basics of the fourth paradigm–sustainable chemical engineering–are now formulated.展开更多
In order to study how to improve the overall performance of the operational metal bolt, based on the production process of an ordinary metal bolt used in understructure engineering, this paper focused on the existing ...In order to study how to improve the overall performance of the operational metal bolt, based on the production process of an ordinary metal bolt used in understructure engineering, this paper focused on the existing problems of ordinary metal bolts identified by some survey and analysis. The results show that the structure of operational metal bolts is so unrea- sonable that the bolt tail is easily fractured by low load capacity. Furthermore, a new type of strong big-end metal bolt and its heat treatment and roughing processing technology were introduced. Through bolt tensile and metallographic tests, the property of the new big-end bolt was analyzed. The new findings indicate that after a special processing, the overall strength and plasticity of the bolt is greatly improved, and the grain of the bolt tail structure is refined, which would help build up favorable working conditions for bolt tails.展开更多
In this paper, we conduct research on the definition and influence of new production of ship industry index of energy efficiency on the ship design process. Ship energy saving is the key to energy saving ship form opt...In this paper, we conduct research on the definition and influence of new production of ship industry index of energy efficiency on the ship design process. Ship energy saving is the key to energy saving ship form optimization design. In the ship under the conditions of use, and to optimize the design of the hull lines with boat, minimize the ship resistance, with the final choice of ship host fuel-sipping. Our research combine the characteristics of the energy efficiency with the shipbuilding industry with the novel and innovative design pattern which will be meaningful.展开更多
In this paper, we conduct research on the definition and influence of new production of ship industry index of energy efficiency on the ship design process. Ship energy saving is the key to energy saving ship form opt...In this paper, we conduct research on the definition and influence of new production of ship industry index of energy efficiency on the ship design process. Ship energy saving is the key to energy saving ship form optimization design. In the ship under the conditions of use, and to optimize the design of the hull lines with boat, minimize the ship resistance, with the final choice of ship host fuel-sipping. Our research combine the characteristics of the energy efficiency with the shipbuilding industry with the novel and innovative design pattern which will be meaningful.展开更多
The intellectual property protection, whether judicial or administrative, is evaluated through a performance evaluation indicator system. To building up such a system, we must follow certain working procedures which u...The intellectual property protection, whether judicial or administrative, is evaluated through a performance evaluation indicator system. To building up such a system, we must follow certain working procedures which usually consist of four steps: to determine the performance objectives, to design the structure of indicator system, to specify the indicators and to set up the weight of indicators. Each step plays a different role in performance evaluation indicator system and has its own impact on the realization of performance evaluation objectives respectively. So the scientifically building up a performance evaluation indicator system is the key to determine whether the intellectual property is protected well or not.展开更多
基金Project(NCET050630) supported by Program for New Century Excellent Talents in University,China
文摘Grate process is an important step in grate-kiln pellet production.However,as a relatively closed system,the process on grate is inaccessible to direct detection,therefore,it is hard to control.As a result,mathematical models of temperature distribution,moisture distribution and oxidation degree distribution in pellet bed,with good universality,computation speed and calculation accuracy,are presented based on analysis of heat transfer and physical-chemical reactions during grate process.And real-time visualization of temperature,moisture and oxidation degree distribution in pellet bed during grate process is realized.Model validation is displayed,and the similarity of 91% is proved.The results can reveal real time status on grate,and provide a solid foundation for the subsequent study of artificial intelligence control system of pellet production.
基金Project(CDJZR10210009) supported by Central College General Fund for Natural Science of Chongqing City,China
文摘To quantify the energy consumption in the process of production, transportation and processing of energy carriers, the life cycle of building energy used can be divided into two phases: on-site phase and embodied phase. As for the embodied phase, with the data in existing statistic yearbook, the consumption items of energy production and transportation were investigated. And based on the life cycle theory, an embodied coefficient of energy carriers was proposed to quantify the embodied energy consumption. Moreover, a calculation method for the embodied coefficient of energy carriers was deduced using Leontief inverse matrix based on the existing data sources. With relevant data of 2005-2007 in China, the embodied coefficients in 2005-2007 were obtained, in which the values for natural gas and thermal power are around 1.3 and 3. l, respectively; while they are 1.03-1.08 for other selected energy carriers. In addition, it is also found that the consumption in the production and processing accounts for more than 75%.
文摘A short presentation of chemical engineering evolution,as guided by its paradigms,is exposed.The first paradigm–unit operations–has emerged as a necessity of systematization due to the explosion of chemical industrial applications at the end of 19th century.The birth in the late 1950s of the second paradigm–transport phenomena–was the consequence of the need for a deep,scienti fic knowledge of the phenomena that explain what happens inside of unit operations.In the second part of 20th century,the importance of chemical product properties and qualities has become essentially in the market fights.Accordingly,it was required with additional and even new fundamental approaches,and product engineering was recognized as the third paradigm.Nowadays chemical industry,as a huge materials and energy consumer,and with a strong ecological impact,couldn't remain outside of sustainability requirements.The basics of the fourth paradigm–sustainable chemical engineering–are now formulated.
文摘In order to study how to improve the overall performance of the operational metal bolt, based on the production process of an ordinary metal bolt used in understructure engineering, this paper focused on the existing problems of ordinary metal bolts identified by some survey and analysis. The results show that the structure of operational metal bolts is so unrea- sonable that the bolt tail is easily fractured by low load capacity. Furthermore, a new type of strong big-end metal bolt and its heat treatment and roughing processing technology were introduced. Through bolt tensile and metallographic tests, the property of the new big-end bolt was analyzed. The new findings indicate that after a special processing, the overall strength and plasticity of the bolt is greatly improved, and the grain of the bolt tail structure is refined, which would help build up favorable working conditions for bolt tails.
文摘In this paper, we conduct research on the definition and influence of new production of ship industry index of energy efficiency on the ship design process. Ship energy saving is the key to energy saving ship form optimization design. In the ship under the conditions of use, and to optimize the design of the hull lines with boat, minimize the ship resistance, with the final choice of ship host fuel-sipping. Our research combine the characteristics of the energy efficiency with the shipbuilding industry with the novel and innovative design pattern which will be meaningful.
文摘In this paper, we conduct research on the definition and influence of new production of ship industry index of energy efficiency on the ship design process. Ship energy saving is the key to energy saving ship form optimization design. In the ship under the conditions of use, and to optimize the design of the hull lines with boat, minimize the ship resistance, with the final choice of ship host fuel-sipping. Our research combine the characteristics of the energy efficiency with the shipbuilding industry with the novel and innovative design pattern which will be meaningful.
文摘The intellectual property protection, whether judicial or administrative, is evaluated through a performance evaluation indicator system. To building up such a system, we must follow certain working procedures which usually consist of four steps: to determine the performance objectives, to design the structure of indicator system, to specify the indicators and to set up the weight of indicators. Each step plays a different role in performance evaluation indicator system and has its own impact on the realization of performance evaluation objectives respectively. So the scientifically building up a performance evaluation indicator system is the key to determine whether the intellectual property is protected well or not.