High acidity crude oils have an advantage over normal oils in terms of their price,but can cause corrosion and refinery problems.They are the so-called opportunity crudes and likely to be important reserved resources ...High acidity crude oils have an advantage over normal oils in terms of their price,but can cause corrosion and refinery problems.They are the so-called opportunity crudes and likely to be important reserved resources in the 21st century.Researches on high acidity crude oils are becoming more and more profound.Based on the existing research achievements,this article has given an overview of the chemical composition and acid distribution of high acidity oils,and also analyzed their origin types and potential influence factors.展开更多
The determination of the geographical origin as well as the adulteration of natural products is a technical problem due to similar chemical composition between an adulterant and the original. It is assumed that tartar...The determination of the geographical origin as well as the adulteration of natural products is a technical problem due to similar chemical composition between an adulterant and the original. It is assumed that tartaric acid comes from natural sources, however there is no specific regulation for this claim. This paper describes the use of isotope mass spectrometry associated with chemometrics to classify different samples of tartaric acid. The results showed that the variables δ^13C, δ^18O and δ^2H allowed the discrimination of tartaric acid samples by geographical origin and production method. By using a combination of chemometfic analysis it was possible to confirm a notoriousseparation of the samples. Thus, this is a promising method to be applied in the quality control and authenticity of tartaric acid.展开更多
The objective of this study is to improve the production of L-DOPA from fungal source like Aspergillus terreus that can be further used to large-scale commercial production of this important drug from microbial source...The objective of this study is to improve the production of L-DOPA from fungal source like Aspergillus terreus that can be further used to large-scale commercial production of this important drug from microbial sources. L-DOPA, a dopamine precursor that can pass the blood-brain barrier, is presently the drug of choice for Parkinson's disease. Microbial production and isolation of L-DOPA from natural sources is yet to be achieved an economical process. In this study, the mycelial pellets ofAspergillus terreus 104 were entrapped in 2% calcium alginate and were studied for their capacity for L-3, 4-dihydroxyphenylalanine production. Results showed that the immobilized pellets produced L-DOPA to the extent of 0.74 mg·G^-1 biomass while the free pellets produced 0.8 mg·G^-1 biomass. Further, storage of immobilized pellets for 96 h at 4 ℃ resulted in the reduction of the original L-DOPA producing activity of the gel beads only 40% and that of free pellets lost completely. In order to improve the production yield, further experiments were designed. It was found that L-DOPA production could be prolonged with repeated batch wise use of immobilized mycelial pellets in calcium alginate retaining 80% of their L-DOPA producing capacity for a period of 72 h while free pellets lost completely within 24 h. Results of this kind therefore is interesting and promising for commercial scale production of L-DOPA from microbial sources.展开更多
文摘High acidity crude oils have an advantage over normal oils in terms of their price,but can cause corrosion and refinery problems.They are the so-called opportunity crudes and likely to be important reserved resources in the 21st century.Researches on high acidity crude oils are becoming more and more profound.Based on the existing research achievements,this article has given an overview of the chemical composition and acid distribution of high acidity oils,and also analyzed their origin types and potential influence factors.
文摘The determination of the geographical origin as well as the adulteration of natural products is a technical problem due to similar chemical composition between an adulterant and the original. It is assumed that tartaric acid comes from natural sources, however there is no specific regulation for this claim. This paper describes the use of isotope mass spectrometry associated with chemometrics to classify different samples of tartaric acid. The results showed that the variables δ^13C, δ^18O and δ^2H allowed the discrimination of tartaric acid samples by geographical origin and production method. By using a combination of chemometfic analysis it was possible to confirm a notoriousseparation of the samples. Thus, this is a promising method to be applied in the quality control and authenticity of tartaric acid.
文摘The objective of this study is to improve the production of L-DOPA from fungal source like Aspergillus terreus that can be further used to large-scale commercial production of this important drug from microbial sources. L-DOPA, a dopamine precursor that can pass the blood-brain barrier, is presently the drug of choice for Parkinson's disease. Microbial production and isolation of L-DOPA from natural sources is yet to be achieved an economical process. In this study, the mycelial pellets ofAspergillus terreus 104 were entrapped in 2% calcium alginate and were studied for their capacity for L-3, 4-dihydroxyphenylalanine production. Results showed that the immobilized pellets produced L-DOPA to the extent of 0.74 mg·G^-1 biomass while the free pellets produced 0.8 mg·G^-1 biomass. Further, storage of immobilized pellets for 96 h at 4 ℃ resulted in the reduction of the original L-DOPA producing activity of the gel beads only 40% and that of free pellets lost completely. In order to improve the production yield, further experiments were designed. It was found that L-DOPA production could be prolonged with repeated batch wise use of immobilized mycelial pellets in calcium alginate retaining 80% of their L-DOPA producing capacity for a period of 72 h while free pellets lost completely within 24 h. Results of this kind therefore is interesting and promising for commercial scale production of L-DOPA from microbial sources.