期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于SVM的高通量dPCR基因芯片荧光图像分类研究 被引量:6
1
作者 刘丽 孙刘杰 王文举 《包装工程》 CAS 北大核心 2020年第19期223-229,共7页
目的为了实现高通量dPCR基因芯片荧光图像的亮点分类与计数,提出一种基于支持向量机(SVM)的荧光图像分类与计数方法。方法首先对荧光图像进行去噪、对比度增强等图像预处理,对预处理后荧光图像进行亮点区域提取标注,去除背景与暗点的冗... 目的为了实现高通量dPCR基因芯片荧光图像的亮点分类与计数,提出一种基于支持向量机(SVM)的荧光图像分类与计数方法。方法首先对荧光图像进行去噪、对比度增强等图像预处理,对预处理后荧光图像进行亮点区域提取标注,去除背景与暗点的冗余信息,利用方向梯度直方图(Histogram of Oriented Gradient,HOG)提取鉴别特征,计算合并所有样本的亮点特征得到HOG特征向量,根据已得到的HOG特征向量创建一个线性SVM分类器,利用训练好的SVM分类器对荧光图像亮点进行分类与计数。结果对比传统算法,文中算法具有较高的分类识别精度,平均准确率高达98%以上,可以很好地实现荧光图像亮点分类与计数。结论在有限的小样本标注数据下,文中算法具有良好的分类性能,能够有效识别荧光图像中的亮点,对其他荧光图像分类研究也具有一定参考价值。 展开更多
关键词 dPCR 支持向量机 方向梯度直方图 荧光图像 亮点分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部