A zinc tetraaminophthalocyanine derivative, zinc tetra(methacryloyl moiety)aminophthalocyanine (MeZnAPc) (with a double bond) was synthesized by the reaction between zinc tetraaminophthalocyanine (ZnTAPc) and methacry...A zinc tetraaminophthalocyanine derivative, zinc tetra(methacryloyl moiety)aminophthalocyanine (MeZnAPc) (with a double bond) was synthesized by the reaction between zinc tetraaminophthalocyanine (ZnTAPc) and methacryloyl chloride. Atom transfer radical polymerization (ATRP) was employed as the polymerization technique to obtain a novel pH-responsive poly- meric photosensitizer (PEGIlo-b-P(DPA,rco-MeZnAPcm)) by copolymerizing of methoxypolyethylene glycols (MPEG) (as reducing agent), 2-(isopropylamino)ethyl methacrylate (DPA) and MeZnAPc. This photosensitizer was characterized by UV-vis spectroscopy, FTIR, ~H NMR, etc. The results indicated that the photosensitizer presented the well pH-responsive be- havior around the pH range 6.0-6.5 and the high photoactivity to 1,3-diphenylisobenzofuran (DPBF). The result of photoca- talysis oxidation of L-tryptophan (L-Try) suggested that zinc phthalocyanine could present high photoactivity due to its disper- sivity at pH 5.5 without formation of micelles, and its photoactivity decreased dramatically at pH 7.4 due to wrapping ZnTAPc into the micelles. Therefore, the novel pH-responsive polymeric photosensitizer has better application prospects in the field of photodynamic therapy.展开更多
基金supported by grants from the National Natural Science Foundation of China (51133006, 51103133 & 51003096)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0654)Zhejiang Provincial Natural Science Foundation of China(Y4100094)
文摘A zinc tetraaminophthalocyanine derivative, zinc tetra(methacryloyl moiety)aminophthalocyanine (MeZnAPc) (with a double bond) was synthesized by the reaction between zinc tetraaminophthalocyanine (ZnTAPc) and methacryloyl chloride. Atom transfer radical polymerization (ATRP) was employed as the polymerization technique to obtain a novel pH-responsive poly- meric photosensitizer (PEGIlo-b-P(DPA,rco-MeZnAPcm)) by copolymerizing of methoxypolyethylene glycols (MPEG) (as reducing agent), 2-(isopropylamino)ethyl methacrylate (DPA) and MeZnAPc. This photosensitizer was characterized by UV-vis spectroscopy, FTIR, ~H NMR, etc. The results indicated that the photosensitizer presented the well pH-responsive be- havior around the pH range 6.0-6.5 and the high photoactivity to 1,3-diphenylisobenzofuran (DPBF). The result of photoca- talysis oxidation of L-tryptophan (L-Try) suggested that zinc phthalocyanine could present high photoactivity due to its disper- sivity at pH 5.5 without formation of micelles, and its photoactivity decreased dramatically at pH 7.4 due to wrapping ZnTAPc into the micelles. Therefore, the novel pH-responsive polymeric photosensitizer has better application prospects in the field of photodynamic therapy.