An affinity adsorbent, Cibacron Blue 3GA immobilized magnetic polyvinyl alcohol (PVA) microspheres was used for bilirubin removal taking the advantage of easy separation of magnetic sorbent from the biosystem. Fe3O4 s...An affinity adsorbent, Cibacron Blue 3GA immobilized magnetic polyvinyl alcohol (PVA) microspheres was used for bilirubin removal taking the advantage of easy separation of magnetic sorbent from the biosystem. Fe3O4 superparamagnetic particles was synthesized with hydrothermal reaction of ferrous chloride (FeCl2) and ferric chloride (FeCl3). Such magnetic particles are then encapsulated in biocompatible PVA to form magnetic polymer microspheres sized from 2 to 15 nm with hydroxyl groups on its surface. Cibacron Blue 3GA, a dye-ligand, was covalently coupled with the polyvinyl alcohol through the nucleophilic reaction between the chloride of its triazine ring and the hydroxyl groups of PVA molecules under alkaline condition. The affinity adsorbent carried 21.1μmol Cibacron Blue 3GA per gram magnetic polymer microspheres was used to remove unconjugated and conjugated bilirubin from the solution which was composed of bilirubin or bilirubin and protein. After the adsorption, the adsorbent loaded with bilirubin was removed easily in the magnetic field.展开更多
The reversed micelles were formed with cationic cetyltrimethylammonium bromide (CTAB) as surfactant and n-hexanol as cosolvent in the CTAB (50mmol.L-1)/hexanol (15% by volume)/hexane system. Cibacron Blue 3GA (CB) as ...The reversed micelles were formed with cationic cetyltrimethylammonium bromide (CTAB) as surfactant and n-hexanol as cosolvent in the CTAB (50mmol.L-1)/hexanol (15% by volume)/hexane system. Cibacron Blue 3GA (CB) as an affinity ligand in the aqueous phase was directly introduced to the reversed micelles with electrostatic interaction between anionic CB and cationic surfactant. High molecular weight (Mr) protein, yeast alcohol dehydrogenase (YADH, Mr = 141000) from baker's yeast, has been purified using the affinity reversed micelles by the phase transfer method. Various parameters, such as CB concentration, pH and ionic strength, on YADH forward and backward transfer were studied. YADH can be transferred into and out from the reversed micelles under mild conditions (only by regulation of solution pH and salt concentration) with the successful recovery of most YADH activity. Both forward and backward extractions occurred when the aqueous phase pH>pI with electrostatic attraction between YADH and CTAB. The recovery of YADH activity and purification factor have been improved with addition of a small amount of affinity CB. The recovery of YADH activity obtained was ~99% and the purification factor was about 4.0-fold after one cycle of full forward and backward extraction. The low ionic strength in the initial aqueous phase might be responsible for the YADH transfer into the reversed micellar phase.展开更多
Potentiometric experiments were carried out on the proton binding equilibria of FA extracted from a weathered coal and HA and Fa extracted from a dark loessial soil.The affinity spectrum model was employed to treat th...Potentiometric experiments were carried out on the proton binding equilibria of FA extracted from a weathered coal and HA and Fa extracted from a dark loessial soil.The affinity spectrum model was employed to treat the experimental data.The affinity spectrum model technique could“magnify” the heterogeneity of the proton binding equilibria.so it was useful for comparing and studying the characteristics of humic substances with similar properties.According to the affinity spectra,we also found that the direction of the titration could affect the properties of the equilibria of FA from the weathered coal,and the acidic functional groups contained in FA from the weathered coal were larger in quantity than those contained in HA and FA from the dark loessial soil.展开更多
基金Supported by the National Natural Science Foundation of China (No. 29776036).
文摘An affinity adsorbent, Cibacron Blue 3GA immobilized magnetic polyvinyl alcohol (PVA) microspheres was used for bilirubin removal taking the advantage of easy separation of magnetic sorbent from the biosystem. Fe3O4 superparamagnetic particles was synthesized with hydrothermal reaction of ferrous chloride (FeCl2) and ferric chloride (FeCl3). Such magnetic particles are then encapsulated in biocompatible PVA to form magnetic polymer microspheres sized from 2 to 15 nm with hydroxyl groups on its surface. Cibacron Blue 3GA, a dye-ligand, was covalently coupled with the polyvinyl alcohol through the nucleophilic reaction between the chloride of its triazine ring and the hydroxyl groups of PVA molecules under alkaline condition. The affinity adsorbent carried 21.1μmol Cibacron Blue 3GA per gram magnetic polymer microspheres was used to remove unconjugated and conjugated bilirubin from the solution which was composed of bilirubin or bilirubin and protein. After the adsorption, the adsorbent loaded with bilirubin was removed easily in the magnetic field.
基金the National Natural Science Foundation of China (No. 29836130).
文摘The reversed micelles were formed with cationic cetyltrimethylammonium bromide (CTAB) as surfactant and n-hexanol as cosolvent in the CTAB (50mmol.L-1)/hexanol (15% by volume)/hexane system. Cibacron Blue 3GA (CB) as an affinity ligand in the aqueous phase was directly introduced to the reversed micelles with electrostatic interaction between anionic CB and cationic surfactant. High molecular weight (Mr) protein, yeast alcohol dehydrogenase (YADH, Mr = 141000) from baker's yeast, has been purified using the affinity reversed micelles by the phase transfer method. Various parameters, such as CB concentration, pH and ionic strength, on YADH forward and backward transfer were studied. YADH can be transferred into and out from the reversed micelles under mild conditions (only by regulation of solution pH and salt concentration) with the successful recovery of most YADH activity. Both forward and backward extractions occurred when the aqueous phase pH>pI with electrostatic attraction between YADH and CTAB. The recovery of YADH activity and purification factor have been improved with addition of a small amount of affinity CB. The recovery of YADH activity obtained was ~99% and the purification factor was about 4.0-fold after one cycle of full forward and backward extraction. The low ionic strength in the initial aqueous phase might be responsible for the YADH transfer into the reversed micellar phase.
文摘Potentiometric experiments were carried out on the proton binding equilibria of FA extracted from a weathered coal and HA and Fa extracted from a dark loessial soil.The affinity spectrum model was employed to treat the experimental data.The affinity spectrum model technique could“magnify” the heterogeneity of the proton binding equilibria.so it was useful for comparing and studying the characteristics of humic substances with similar properties.According to the affinity spectra,we also found that the direction of the titration could affect the properties of the equilibria of FA from the weathered coal,and the acidic functional groups contained in FA from the weathered coal were larger in quantity than those contained in HA and FA from the dark loessial soil.