End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerizatio...End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP.展开更多
The catalytically grown carbon nanofibers were treated by a mixture of concentrated nitric aid and sulfuric aid in an autoclave at temperature 333, 363 and 423 K. It was found that the samples treated at 363 K and 423...The catalytically grown carbon nanofibers were treated by a mixture of concentrated nitric aid and sulfuric aid in an autoclave at temperature 333, 363 and 423 K. It was found that the samples treated at 363 K and 423 K were still well dispersed in water 15 hours later, indicating that carbon nanofibers can be made hydrophilicy. It was also found that the dispersion was destroyed when the pH value was lowered by adding acid. The results are significant when the carbon nanofibers are used as enhancing component in polymer composite material because several hundreds of nm are perfect size and the hydrophilicity controls the dispersion of CNFs in the polymer media. It is concluded that the amount of the oxygen-containing groups on the surface and the hydrophilicity of the carbon nanofibers can be controlled by the treatment temperature, and that the carbon nanofibers can be cleaved into uniform segments.展开更多
基金Supported by PetroChina Company Limited(2020 B-2711)。
文摘End-functionalization of polydiene rubbers can not only improve its compatibility with inorganic fillers,but also enhance the overall mechanical properties.Nevertheless,for traditional neodymium(Nd)diene polymerization systems,it is highly challenging to achieve such end-functionalizations,because most of polydienyl chains are capped withη3-allyl-Nd moiety during the end of polymerization,which shows very poor reactivity with nucleophile compounds.We launched a new diene polymerization strategy calling coordinative chain transfer polymerization(CCTP)[1].In such a system,all the polydienyl chains are capped withη1-allyl-Al moieties,which reveal greater reactivity with cyclic esters and epoxide compounds,providing an effective manner to prepare polydiene-polyester amphiphilic block copolymers.Inspired by such findings,we now show herein how such types of chain-ends react with isot-hiocyanate to demonstrate an efficient in-situ manner to access end-functionalized polydienes by using CCTP.
基金Supported by the Natural Science Foundation of Ningbo (2010A610093)
文摘The catalytically grown carbon nanofibers were treated by a mixture of concentrated nitric aid and sulfuric aid in an autoclave at temperature 333, 363 and 423 K. It was found that the samples treated at 363 K and 423 K were still well dispersed in water 15 hours later, indicating that carbon nanofibers can be made hydrophilicy. It was also found that the dispersion was destroyed when the pH value was lowered by adding acid. The results are significant when the carbon nanofibers are used as enhancing component in polymer composite material because several hundreds of nm are perfect size and the hydrophilicity controls the dispersion of CNFs in the polymer media. It is concluded that the amount of the oxygen-containing groups on the surface and the hydrophilicity of the carbon nanofibers can be controlled by the treatment temperature, and that the carbon nanofibers can be cleaved into uniform segments.