The nanostructures of zinc chromite(Zn Cr2O4) were fabricated by the microwave method. It was shown that the well-crystallized spinel structure is formed after annealing at 700 °C. The influence of reaction tim...The nanostructures of zinc chromite(Zn Cr2O4) were fabricated by the microwave method. It was shown that the well-crystallized spinel structure is formed after annealing at 700 °C. The influence of reaction time and irradiation power of oven on the size and shape of the as-prepared Zn Cr2O4 samples was studied. The synthesized samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive X-ray(EDX), transmission electron microscopy(TEM), diffuse reflectance spectroscopy(DRS), photoluminescence(PL) spectroscopy, Fourier transform infrared(FTIR) spectra and vibrating sample magnetometry(VSM), respectively. The optical band gap calculated using DRS was found to be 3.50 e V for Zn Cr2O4 nanostructures. Photoluminescence measurements also confirmed this result.展开更多
A zinc tetraaminophthalocyanine derivative, zinc tetra(methacryloyl moiety)aminophthalocyanine (MeZnAPc) (with a double bond) was synthesized by the reaction between zinc tetraaminophthalocyanine (ZnTAPc) and methacry...A zinc tetraaminophthalocyanine derivative, zinc tetra(methacryloyl moiety)aminophthalocyanine (MeZnAPc) (with a double bond) was synthesized by the reaction between zinc tetraaminophthalocyanine (ZnTAPc) and methacryloyl chloride. Atom transfer radical polymerization (ATRP) was employed as the polymerization technique to obtain a novel pH-responsive poly- meric photosensitizer (PEGIlo-b-P(DPA,rco-MeZnAPcm)) by copolymerizing of methoxypolyethylene glycols (MPEG) (as reducing agent), 2-(isopropylamino)ethyl methacrylate (DPA) and MeZnAPc. This photosensitizer was characterized by UV-vis spectroscopy, FTIR, ~H NMR, etc. The results indicated that the photosensitizer presented the well pH-responsive be- havior around the pH range 6.0-6.5 and the high photoactivity to 1,3-diphenylisobenzofuran (DPBF). The result of photoca- talysis oxidation of L-tryptophan (L-Try) suggested that zinc phthalocyanine could present high photoactivity due to its disper- sivity at pH 5.5 without formation of micelles, and its photoactivity decreased dramatically at pH 7.4 due to wrapping ZnTAPc into the micelles. Therefore, the novel pH-responsive polymeric photosensitizer has better application prospects in the field of photodynamic therapy.展开更多
文摘The nanostructures of zinc chromite(Zn Cr2O4) were fabricated by the microwave method. It was shown that the well-crystallized spinel structure is formed after annealing at 700 °C. The influence of reaction time and irradiation power of oven on the size and shape of the as-prepared Zn Cr2O4 samples was studied. The synthesized samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), energy dispersive X-ray(EDX), transmission electron microscopy(TEM), diffuse reflectance spectroscopy(DRS), photoluminescence(PL) spectroscopy, Fourier transform infrared(FTIR) spectra and vibrating sample magnetometry(VSM), respectively. The optical band gap calculated using DRS was found to be 3.50 e V for Zn Cr2O4 nanostructures. Photoluminescence measurements also confirmed this result.
基金supported by grants from the National Natural Science Foundation of China (51133006, 51103133 & 51003096)the Program for Changjiang Scholars and Innovative Research Team in University (IRT0654)Zhejiang Provincial Natural Science Foundation of China(Y4100094)
文摘A zinc tetraaminophthalocyanine derivative, zinc tetra(methacryloyl moiety)aminophthalocyanine (MeZnAPc) (with a double bond) was synthesized by the reaction between zinc tetraaminophthalocyanine (ZnTAPc) and methacryloyl chloride. Atom transfer radical polymerization (ATRP) was employed as the polymerization technique to obtain a novel pH-responsive poly- meric photosensitizer (PEGIlo-b-P(DPA,rco-MeZnAPcm)) by copolymerizing of methoxypolyethylene glycols (MPEG) (as reducing agent), 2-(isopropylamino)ethyl methacrylate (DPA) and MeZnAPc. This photosensitizer was characterized by UV-vis spectroscopy, FTIR, ~H NMR, etc. The results indicated that the photosensitizer presented the well pH-responsive be- havior around the pH range 6.0-6.5 and the high photoactivity to 1,3-diphenylisobenzofuran (DPBF). The result of photoca- talysis oxidation of L-tryptophan (L-Try) suggested that zinc phthalocyanine could present high photoactivity due to its disper- sivity at pH 5.5 without formation of micelles, and its photoactivity decreased dramatically at pH 7.4 due to wrapping ZnTAPc into the micelles. Therefore, the novel pH-responsive polymeric photosensitizer has better application prospects in the field of photodynamic therapy.