AIM: TO accurately and realistically elucidate human stem cell behaviors in vivo and the fundamental mechanisms controlling human stem cell fates in vivo, which is urgently required in regenerative medicine and treat...AIM: TO accurately and realistically elucidate human stem cell behaviors in vivo and the fundamental mechanisms controlling human stem cell fates in vivo, which is urgently required in regenerative medicine and treatments for some human diseases, a surrogate human-rat chimera model was developed. METHODS: Human-rat chimeras were achieved by in utero transplanting low-density mononuclear cells from human umbilical cord blood into the fetal rats at 9-11 d of gestation, and subsequently, a variety of methods, including flow cytometry, PCR as well as immunohistochemical assay, were used to test the human donor contribution in the recipients. RESULTS: Of 29 live-born recipients, 19 had the presence of human CD45^+ cells in peripheral blood (PB) detected by flow cytometry, while PCR analysis on genomic DNA from 11 different adult tissues showed that 14 selected from flow cytometry-positive 19 animals possessed of donor-derived human cell engraftment in multiple tissues (i.e. liver, spleen, thymus, heart, kidney, blood, lung, muscle, gut and skin) examined at the time of tissue collection, as confirmed by detecting human 132- microglobulin expression using immunohistochemistry. Tn this xenogeneic system, the engrafted donor-derived human cells persisted in multiple tissues for at least 6 mo after birth. Moreover, transplanted human donor cells underwent site-specific differentiation into CK18-positive human cells in chimeric liver and CEHS-positive human cells in chimeric spleen and thymus of recipients. CONCLUSION: Taken together, these findings suggest that we successfully developed human-rat chimeras, in which xenogeneic human cells exist up to 6 mo later. This humanized small animal model, which offers an in vivo environment more closely resembling to the situations in human, provides an invaluable and effective approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future. The potential for new advances in our better understanding the living biological systems in human provided by investigators in humanized animals will remain promising.展开更多
Objective To investigate the anti-tumor effects in vitro and in vivo distribution of the human/murine chimeric antibody (D2C). Methods The CD71 positive target cells (K562, GEM and SMMC7721) and the effector cells, fr...Objective To investigate the anti-tumor effects in vitro and in vivo distribution of the human/murine chimeric antibody (D2C). Methods The CD71 positive target cells (K562, GEM and SMMC7721) and the effector cells, freshly isolated human PBMC, with the ratio of target cells to effector cells 1:50, were incubated in various dilutions of D2C antibody ( Ab) . Antibody dependent cytotoxicity (AD-CC) was tested by using an LDH-release assay. Instead of effector cells, complement was added to the target cells (GEM, SMMC-7721) with various dilutions of D2C Ab. A method of counting death cells was used in complement dependent cytotoxicity (CDC) assay. Tumor localization and distribution of the chimeric antibody (D2C) were observed by labeling the chimeric Ab with radioiodine(131I) and injecting it into nude mice (Balb/c nu/nu) transplanted with human hepatocellular carcinoma cells (SMMC-7721).Results A significant ADCC was observed with the increased concentration of the D2C Ab. Cytolysis of CD71-positive target cells by the D2C Ab was found in the presence of fresh rabbit complement. Labeled D2C administered by intraperitoneal as well as tumor regional injection, was visualized by SPECT. The distribution of D2C Ab in murine organs and tissues showed that non-specific binding was lower following tumor regional administration than when the antibody was administered by an intraperitoneal injection. The human/murine chimeric antibody (D2C) has in vitro anti-tumor effects and can exert its effects in specific tumor localization. Its distribution and local effects in vivo can be detected by radioimmunoimaging.Conclusion CD71 human/murine chimeric antibody showed marked killing of tumor cells in vitro, and specific recognition and high affinity binding to tumor tissue in vivo展开更多
基金Supported by The National Natural Science Foundation of China, No. 30271177 and No. 39870676 the National 9th Five-year Program, No. 101033+3 种基金 The Major Science and Technology Projects of Guangdong Province, No. B602 Natural Science Foundation of Guangdong Province, No. 021903 The Postdoctoral Fellowship Foundation of China (Series 29)The Special Fund of Scientifi c Instrument Collaborative Share-net in Guangzhou, No. 2006176
文摘AIM: TO accurately and realistically elucidate human stem cell behaviors in vivo and the fundamental mechanisms controlling human stem cell fates in vivo, which is urgently required in regenerative medicine and treatments for some human diseases, a surrogate human-rat chimera model was developed. METHODS: Human-rat chimeras were achieved by in utero transplanting low-density mononuclear cells from human umbilical cord blood into the fetal rats at 9-11 d of gestation, and subsequently, a variety of methods, including flow cytometry, PCR as well as immunohistochemical assay, were used to test the human donor contribution in the recipients. RESULTS: Of 29 live-born recipients, 19 had the presence of human CD45^+ cells in peripheral blood (PB) detected by flow cytometry, while PCR analysis on genomic DNA from 11 different adult tissues showed that 14 selected from flow cytometry-positive 19 animals possessed of donor-derived human cell engraftment in multiple tissues (i.e. liver, spleen, thymus, heart, kidney, blood, lung, muscle, gut and skin) examined at the time of tissue collection, as confirmed by detecting human 132- microglobulin expression using immunohistochemistry. Tn this xenogeneic system, the engrafted donor-derived human cells persisted in multiple tissues for at least 6 mo after birth. Moreover, transplanted human donor cells underwent site-specific differentiation into CK18-positive human cells in chimeric liver and CEHS-positive human cells in chimeric spleen and thymus of recipients. CONCLUSION: Taken together, these findings suggest that we successfully developed human-rat chimeras, in which xenogeneic human cells exist up to 6 mo later. This humanized small animal model, which offers an in vivo environment more closely resembling to the situations in human, provides an invaluable and effective approach for in vivo investigating human stem cell behaviors, and further in vivo examining fundamental mechanisms controlling human stem cell fates in the future. The potential for new advances in our better understanding the living biological systems in human provided by investigators in humanized animals will remain promising.
基金National Sciences Foundation of China(No.39970693)
文摘Objective To investigate the anti-tumor effects in vitro and in vivo distribution of the human/murine chimeric antibody (D2C). Methods The CD71 positive target cells (K562, GEM and SMMC7721) and the effector cells, freshly isolated human PBMC, with the ratio of target cells to effector cells 1:50, were incubated in various dilutions of D2C antibody ( Ab) . Antibody dependent cytotoxicity (AD-CC) was tested by using an LDH-release assay. Instead of effector cells, complement was added to the target cells (GEM, SMMC-7721) with various dilutions of D2C Ab. A method of counting death cells was used in complement dependent cytotoxicity (CDC) assay. Tumor localization and distribution of the chimeric antibody (D2C) were observed by labeling the chimeric Ab with radioiodine(131I) and injecting it into nude mice (Balb/c nu/nu) transplanted with human hepatocellular carcinoma cells (SMMC-7721).Results A significant ADCC was observed with the increased concentration of the D2C Ab. Cytolysis of CD71-positive target cells by the D2C Ab was found in the presence of fresh rabbit complement. Labeled D2C administered by intraperitoneal as well as tumor regional injection, was visualized by SPECT. The distribution of D2C Ab in murine organs and tissues showed that non-specific binding was lower following tumor regional administration than when the antibody was administered by an intraperitoneal injection. The human/murine chimeric antibody (D2C) has in vitro anti-tumor effects and can exert its effects in specific tumor localization. Its distribution and local effects in vivo can be detected by radioimmunoimaging.Conclusion CD71 human/murine chimeric antibody showed marked killing of tumor cells in vitro, and specific recognition and high affinity binding to tumor tissue in vivo