In this paper,three dimensions kinematics and kinetics simulation are discussed for hardware realization of a physical biped walking-chair robot.The direct and inverse close-form kinematics solution of the biped walki...In this paper,three dimensions kinematics and kinetics simulation are discussed for hardware realization of a physical biped walking-chair robot.The direct and inverse close-form kinematics solution of the biped walking-chair robot is deduced.Several gaits are realized with the kinematics solution,including walking straight on level floor,going up stair,squatting down and standing up.Zero Moment Point(ZMP)equation is analyzed considering the movement of the crew.The simulated biped walking-chair robot is used for mechanical design,gaits development and validation before they are tested on real robot.展开更多
As environmental pollution increases, measures taken cannot follow increasing issues causing environmental pollution. Thus, important items required for human life such as air, water, and soil are polluted rapidly and...As environmental pollution increases, measures taken cannot follow increasing issues causing environmental pollution. Thus, important items required for human life such as air, water, and soil are polluted rapidly and threatened human health. Humanity produce and consume various goods and services in order to meet current requirements as well as pollute the environment required for maintaining life and source for these activities. Environmental taxes are adopted as one of the precautions for avoiding pollution of necessary components to sustain human life. This study aims to determine the sensitivities of 597 tax payers to environmental taxes, who contribute to environmental direct or indirect regulations with income, motor vehicle, special consumption, and sanitation taxes. The findings of the questionnaire suggest that corresponding taxpayers in Erzurum are sensitive to environmental taxes and that they tend to adopt any environmental tax being performed while this tax is intended to protect the environment.展开更多
Intelligent unmanned autonomous systems are some of the most important applications of artificial intelligence (AI). The development of such systems can significantly promote innovation in AI technologies. This pape...Intelligent unmanned autonomous systems are some of the most important applications of artificial intelligence (AI). The development of such systems can significantly promote innovation in AI technologies. This paper introduces the trends in the development of intelligent unmanned autonomous systems by summarizing the main achievements in each technological platform. Furthermore, we classify the relevant technologies into seven areas, including AI technologies, unmanned vehicles, unmanned aerial vehicles, service robots, space robots, marine robots, and unmanned workshops/intelligent plants. Current trends and de- velopments in each area are introduced.展开更多
A novel network control method based on trophaUaxis mechanism is applied to the formation flight problem for multiple un- manned aerial vehicles (UAVs). Firstly, the multiple UAVs formation flight system based on tr...A novel network control method based on trophaUaxis mechanism is applied to the formation flight problem for multiple un- manned aerial vehicles (UAVs). Firstly, the multiple UAVs formation flight system based on trophallaxis network control is given. Then, the model of leader-follower formation flight with a virtual leader based on trophallaxis network control is pre- sented, and the influence of time delays on the network performance is analyzed. A particle swarm optimization (PSO)-based formation controller is proposed for solving the leader-follower formation flight system. The proposed method is applied to five UAVs for achieving a 'V' formation, and a series of experimental results show its feasibility and validity. The proposed control algorithm is also a promising control strategy for formation flight of multiple unmanned underwater vehicles (UUVs), unmanned ground vehicles (UGVs), missiles and satellites.展开更多
This paper proposed an improved artificial physics(AP)method to solve the autonomous navigation problem for multiple unmanned aerial vehicles(UAVs)/unmanned ground vehicles(UGVs)heterogeneous coordination in the three...This paper proposed an improved artificial physics(AP)method to solve the autonomous navigation problem for multiple unmanned aerial vehicles(UAVs)/unmanned ground vehicles(UGVs)heterogeneous coordination in the three-dimensional space.The basic AP method has a shortcoming of easily plunging into a local optimal solution,which can result in navigation fails.To avoid the local optimum,we improved the AP method with a random scheme.In the improved AP method,random forces are used to make heterogeneous multi-UAVs/UGVs escape from local optimum and achieve global optimum.Experimental results showed that the improved AP method can achieve smoother trajectories and smaller time consumption than the basic AP method and basic potential field method(PFM).展开更多
基金The National Natural Science Foundation of China(No.60575049)
文摘In this paper,three dimensions kinematics and kinetics simulation are discussed for hardware realization of a physical biped walking-chair robot.The direct and inverse close-form kinematics solution of the biped walking-chair robot is deduced.Several gaits are realized with the kinematics solution,including walking straight on level floor,going up stair,squatting down and standing up.Zero Moment Point(ZMP)equation is analyzed considering the movement of the crew.The simulated biped walking-chair robot is used for mechanical design,gaits development and validation before they are tested on real robot.
文摘As environmental pollution increases, measures taken cannot follow increasing issues causing environmental pollution. Thus, important items required for human life such as air, water, and soil are polluted rapidly and threatened human health. Humanity produce and consume various goods and services in order to meet current requirements as well as pollute the environment required for maintaining life and source for these activities. Environmental taxes are adopted as one of the precautions for avoiding pollution of necessary components to sustain human life. This study aims to determine the sensitivities of 597 tax payers to environmental taxes, who contribute to environmental direct or indirect regulations with income, motor vehicle, special consumption, and sanitation taxes. The findings of the questionnaire suggest that corresponding taxpayers in Erzurum are sensitive to environmental taxes and that they tend to adopt any environmental tax being performed while this tax is intended to protect the environment.
文摘Intelligent unmanned autonomous systems are some of the most important applications of artificial intelligence (AI). The development of such systems can significantly promote innovation in AI technologies. This paper introduces the trends in the development of intelligent unmanned autonomous systems by summarizing the main achievements in each technological platform. Furthermore, we classify the relevant technologies into seven areas, including AI technologies, unmanned vehicles, unmanned aerial vehicles, service robots, space robots, marine robots, and unmanned workshops/intelligent plants. Current trends and de- velopments in each area are introduced.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273054,60975072 and 60604009)the National Basic Research Program of China("973"Project)(Grant No.2013CB035503)+1 种基金the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021)the Aeronautical Foundation of China(Grant No.20115151019)
文摘A novel network control method based on trophaUaxis mechanism is applied to the formation flight problem for multiple un- manned aerial vehicles (UAVs). Firstly, the multiple UAVs formation flight system based on trophallaxis network control is given. Then, the model of leader-follower formation flight with a virtual leader based on trophallaxis network control is pre- sented, and the influence of time delays on the network performance is analyzed. A particle swarm optimization (PSO)-based formation controller is proposed for solving the leader-follower formation flight system. The proposed method is applied to five UAVs for achieving a 'V' formation, and a series of experimental results show its feasibility and validity. The proposed control algorithm is also a promising control strategy for formation flight of multiple unmanned underwater vehicles (UUVs), unmanned ground vehicles (UGVs), missiles and satellites.
基金supported by the National Natural Science Foundation of China(Grant Nos.61273054,60975072)the National Basic Research Program of China("973" Project)(Grant No.2013CB035503)+3 种基金the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021)the Top-Notch Young Talents Program of Chinathe Fundamental Research Funds for the Central Universities of Chinathe Aeronautical Foundation of China(Grant No.20115151019)
文摘This paper proposed an improved artificial physics(AP)method to solve the autonomous navigation problem for multiple unmanned aerial vehicles(UAVs)/unmanned ground vehicles(UGVs)heterogeneous coordination in the three-dimensional space.The basic AP method has a shortcoming of easily plunging into a local optimal solution,which can result in navigation fails.To avoid the local optimum,we improved the AP method with a random scheme.In the improved AP method,random forces are used to make heterogeneous multi-UAVs/UGVs escape from local optimum and achieve global optimum.Experimental results showed that the improved AP method can achieve smoother trajectories and smaller time consumption than the basic AP method and basic potential field method(PFM).