The objective of this research was to use abdominal computed tomography (CT) scans to non-invasively quantify anthropometrical data of the human stomach and to concomitantly create an anatomically correct and distensi...The objective of this research was to use abdominal computed tomography (CT) scans to non-invasively quantify anthropometrical data of the human stomach and to concomitantly create an anatomically correct and distensible ex-vivo gastric model. Thirty-three abdominal CT scans of human subjects were obtained and were imported into reconstruction software to generate 3D models of the stomachs. Anthropometrical data such as gastric wall thickness, gastric surface area and gastric volume were subsequently quantified. A representative 3D computer model was exported into a selective laser sintering (SLS) rapid prototyping machine to create an anatomically correct solid gastric model. Subsequently, a replica wax template of the SLS model was created. A negative mould was offset around the wax template such that the offset distance was equivalent to that of the gastric wall thickness. A silicone with similar mechanical properties to the human stomach was poured into the offset. The lost wax manufacturing technique was employed to create a hollow distensible stomach model. 3D computer gastric models were generated from the CT scans. A hollow distensible silicone ex-vivo gastric model with similar compliance to that of the human stomach was created. The anthropometrical data indicated that there is no significant relationship between BMI and gastric surface area or gastric volume. There were inter- and intra-group differences between groups with respect to gastric wall thickness. This study demonstrates that abdominal CT scans can be used to both non-invasively determine gastric anthropometrical data as well as create realistic ex-vivo stomach models.展开更多
This paper presents a new approach for modeling the human body by considering the motion state and the shape of whole body. The body model consists of a skeleton kinematic model and a surface model. The former is used...This paper presents a new approach for modeling the human body by considering the motion state and the shape of whole body. The body model consists of a skeleton kinematic model and a surface model. The former is used to determine the posture of the body,and the latter is used to generate the body shape according to the given posture. The body surface is reconstructed with multi-segment B-spline surfaces based on the 3D scan data from a real human body.Using only a few joints parameters and the original surface scan data, the various body postures and the shape can be generated easily. The model has a strong potential of being used for ergonomic design,garment design, virtual reality environment, as well as creating human animation, etc.展开更多
基金Supported by the Irish Research Council for Science Engineering and Technology and by the National Development Plan
文摘The objective of this research was to use abdominal computed tomography (CT) scans to non-invasively quantify anthropometrical data of the human stomach and to concomitantly create an anatomically correct and distensible ex-vivo gastric model. Thirty-three abdominal CT scans of human subjects were obtained and were imported into reconstruction software to generate 3D models of the stomachs. Anthropometrical data such as gastric wall thickness, gastric surface area and gastric volume were subsequently quantified. A representative 3D computer model was exported into a selective laser sintering (SLS) rapid prototyping machine to create an anatomically correct solid gastric model. Subsequently, a replica wax template of the SLS model was created. A negative mould was offset around the wax template such that the offset distance was equivalent to that of the gastric wall thickness. A silicone with similar mechanical properties to the human stomach was poured into the offset. The lost wax manufacturing technique was employed to create a hollow distensible stomach model. 3D computer gastric models were generated from the CT scans. A hollow distensible silicone ex-vivo gastric model with similar compliance to that of the human stomach was created. The anthropometrical data indicated that there is no significant relationship between BMI and gastric surface area or gastric volume. There were inter- and intra-group differences between groups with respect to gastric wall thickness. This study demonstrates that abdominal CT scans can be used to both non-invasively determine gastric anthropometrical data as well as create realistic ex-vivo stomach models.
基金This work was funded by the Science & Technology Development Fund of Shanghai, China( No. 005111081)
文摘This paper presents a new approach for modeling the human body by considering the motion state and the shape of whole body. The body model consists of a skeleton kinematic model and a surface model. The former is used to determine the posture of the body,and the latter is used to generate the body shape according to the given posture. The body surface is reconstructed with multi-segment B-spline surfaces based on the 3D scan data from a real human body.Using only a few joints parameters and the original surface scan data, the various body postures and the shape can be generated easily. The model has a strong potential of being used for ergonomic design,garment design, virtual reality environment, as well as creating human animation, etc.