期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于支持向量机的人体异常步态特征识别方法研究
1
作者 杨莉杰 《信息与电脑》 2024年第2期119-121,共3页
人体异常步态特征识别可分析个体的行走姿势和模式,推算身份信息及人体潜在的健康问题。基于此,文章系统阐述基于支持向量机(Support Vector Machine,SVM)的人体异常步态特征识别方法,分析SVM在处理步态数据方面的技术优势和实现过程,开... 人体异常步态特征识别可分析个体的行走姿势和模式,推算身份信息及人体潜在的健康问题。基于此,文章系统阐述基于支持向量机(Support Vector Machine,SVM)的人体异常步态特征识别方法,分析SVM在处理步态数据方面的技术优势和实现过程,开展CASIA-B和OUMVLP数据集的测试实验,验证该方法在步态识别上的准确性比传统反向传播(Back Propagation,BP)神经网络更高,为复杂行为识别研究提供了新视角。 展开更多
关键词 支持向量机(SVM) 人体异常步态 特征识别 模型构建
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部