The aim of the study was to evaluate the impacts of the transition from wood fuel to Liquefied Petroleum Gas (LPG) from energy use and health perspectives along an altitudinal gradient (viz., lower altitude; middle...The aim of the study was to evaluate the impacts of the transition from wood fuel to Liquefied Petroleum Gas (LPG) from energy use and health perspectives along an altitudinal gradient (viz., lower altitude; middle altitude; and higher altitude) of the Central Himalayas. Empirical field study and questionnaire based survey was conducted for obtaining the data. A total of 2o households from each altitude were selected for obtaining reliable information on the actual quantity of fuelwood consumed. Of the 2o households, five households each based on the family size i.e., small families (〈4 members), medium (5-8 members) and large (〉9 members) from all the altitudinal regions were selected. This was followed by an administration of a questionnaire on the quantity of fuelwood consumed. After the completion of the questionnaire survey, the data was validated using a weighted survey for the randomly selected households for obtaining precise information on the actual quantity of fuelwood consumed. Energy analysis is done with respect to the time spent on fuelwood collection and energy value of burning of per kg of fuelwood. Study indicates that declining biomass requirement from forests contributes significantly towards energy conservation, also has positive impact on human health. Per capita annual energy expenditure on collection of fuelwood is 752 MJ which is higher than any other activity in villages of Central Himalaya. The LPG substitution has contributed to energy saving which is equivalent to 2976-3,742 MJ per capita per year in middle and lower altitudes respectively. In the higher altitude the energy saving is calculated to be about 257 MJ per capita per year. Replacing fuelwood with LPG has made positive impact on society in terms of improving the health while reducing diseases that are caused due to indoor air pollution.展开更多
Recent articles reviewed the molecular damaging pathway of various pollutants especially PM2.5 particles and polycylic aromatic hydrocarbon. AhR (aryl hydrocarbon receptor) pathway, tobacco-similar pathway, oxidatio...Recent articles reviewed the molecular damaging pathway of various pollutants especially PM2.5 particles and polycylic aromatic hydrocarbon. AhR (aryl hydrocarbon receptor) pathway, tobacco-similar pathway, oxidation, as well as epigenetics pathway were reviewed. Based on the working mechanism, the reported study method and methodology used in Ashland lab were reviewed, including cell level experiment, through reconstructed human skin to in vivo study.展开更多
文摘The aim of the study was to evaluate the impacts of the transition from wood fuel to Liquefied Petroleum Gas (LPG) from energy use and health perspectives along an altitudinal gradient (viz., lower altitude; middle altitude; and higher altitude) of the Central Himalayas. Empirical field study and questionnaire based survey was conducted for obtaining the data. A total of 2o households from each altitude were selected for obtaining reliable information on the actual quantity of fuelwood consumed. Of the 2o households, five households each based on the family size i.e., small families (〈4 members), medium (5-8 members) and large (〉9 members) from all the altitudinal regions were selected. This was followed by an administration of a questionnaire on the quantity of fuelwood consumed. After the completion of the questionnaire survey, the data was validated using a weighted survey for the randomly selected households for obtaining precise information on the actual quantity of fuelwood consumed. Energy analysis is done with respect to the time spent on fuelwood collection and energy value of burning of per kg of fuelwood. Study indicates that declining biomass requirement from forests contributes significantly towards energy conservation, also has positive impact on human health. Per capita annual energy expenditure on collection of fuelwood is 752 MJ which is higher than any other activity in villages of Central Himalaya. The LPG substitution has contributed to energy saving which is equivalent to 2976-3,742 MJ per capita per year in middle and lower altitudes respectively. In the higher altitude the energy saving is calculated to be about 257 MJ per capita per year. Replacing fuelwood with LPG has made positive impact on society in terms of improving the health while reducing diseases that are caused due to indoor air pollution.
文摘Recent articles reviewed the molecular damaging pathway of various pollutants especially PM2.5 particles and polycylic aromatic hydrocarbon. AhR (aryl hydrocarbon receptor) pathway, tobacco-similar pathway, oxidation, as well as epigenetics pathway were reviewed. Based on the working mechanism, the reported study method and methodology used in Ashland lab were reviewed, including cell level experiment, through reconstructed human skin to in vivo study.