Our objective is to solve the lactose malabsorption and intolerance of human beings by combining micro-ecology path with genetic engineering technique. Plasmid pMG36e was used to clone and express a β-galactosidase g...Our objective is to solve the lactose malabsorption and intolerance of human beings by combining micro-ecology path with genetic engineering technique. Plasmid pMG36e was used to clone and express a β-galactosidase gene from L. delbrueckü bulgaricus strain 1.1480 in the Lactococcus lactis subsp. cremoris MG1363 and Lactococcus lactis subsp. lactis IL1403. The recombinant plasmid was preserved and proliferated in Escherichia coli ( E. coli) JM109, and transformed into MG1363 and IL1403 by electroporation. The protein expression was studied. ( 1 ) The bifidobacterium culture medium ( BBL) was suitable for the growth of the strain 1.1480. (2) With 13 amino acids at the N-terminus from the vector, β-gal- actosidase fusion protein (which retained the enzyme activity) could be successfully expressed in E. coli JM109, MG1363 and IL1403, but the expression quantity was larger in the former than in the latter two. (3) The SD sequence designed could be successfully recognized by both the E. coli and the Lactococcus lactis, but the expression level of the non-fusion β-galac- tosidase protein was lower than that of the fusion protein in the same host. The β-galactosidase genetically engineered E. coli JM109 is a useful tool to produce this enzyme in vitro . The signal peptide of the usp45 protein from the Lactococcus lac- tis can be added before the promoter sequence to promote β-galactosidase secretion from Lactococcus lactis . The potential ap- plication of the β-galactosidase genetically engineered MG1363 and IL1403 to cure the lactose malabsorption and lactose in- tolerance in both health food and medicine is promising.展开更多
In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. T...In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly).展开更多
Genetic structure of Iraqi buffalo population, in the South, Middle and North area of the country was characterized, using six microsatellite markers (ETHI52, ETH02, ETH225, CSSM060, BM1706 and INRA005). Seventy all...Genetic structure of Iraqi buffalo population, in the South, Middle and North area of the country was characterized, using six microsatellite markers (ETHI52, ETH02, ETH225, CSSM060, BM1706 and INRA005). Seventy alleles were detected across the six loci. Total number of alleles per locus (TNA) varied from 3 (INRA005 locus) to 16 (ETH 152 locus). The mean number of allele (MNA) across the six loci in Iraqi indigenous buffalo was 11.4. The locus ETHI52 was the most polymorphic marker according to its number of allele (16), the expected heterozygosity (0.86) and polymorphism information content (0.80) number of alleles (3), expected Heterozygosity (0.1-0.2) and polymorphism information content (0.1-0.2). Results showed that these markers were suitable in population genetics researches. It was concluded that a high degree of genetic diversity exist in the Iraqi buffalo populations.展开更多
文摘Our objective is to solve the lactose malabsorption and intolerance of human beings by combining micro-ecology path with genetic engineering technique. Plasmid pMG36e was used to clone and express a β-galactosidase gene from L. delbrueckü bulgaricus strain 1.1480 in the Lactococcus lactis subsp. cremoris MG1363 and Lactococcus lactis subsp. lactis IL1403. The recombinant plasmid was preserved and proliferated in Escherichia coli ( E. coli) JM109, and transformed into MG1363 and IL1403 by electroporation. The protein expression was studied. ( 1 ) The bifidobacterium culture medium ( BBL) was suitable for the growth of the strain 1.1480. (2) With 13 amino acids at the N-terminus from the vector, β-gal- actosidase fusion protein (which retained the enzyme activity) could be successfully expressed in E. coli JM109, MG1363 and IL1403, but the expression quantity was larger in the former than in the latter two. (3) The SD sequence designed could be successfully recognized by both the E. coli and the Lactococcus lactis, but the expression level of the non-fusion β-galac- tosidase protein was lower than that of the fusion protein in the same host. The β-galactosidase genetically engineered E. coli JM109 is a useful tool to produce this enzyme in vitro . The signal peptide of the usp45 protein from the Lactococcus lac- tis can be added before the promoter sequence to promote β-galactosidase secretion from Lactococcus lactis . The potential ap- plication of the β-galactosidase genetically engineered MG1363 and IL1403 to cure the lactose malabsorption and lactose in- tolerance in both health food and medicine is promising.
基金support and help of many individuals in the SASTRA University
文摘In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly).
文摘Genetic structure of Iraqi buffalo population, in the South, Middle and North area of the country was characterized, using six microsatellite markers (ETHI52, ETH02, ETH225, CSSM060, BM1706 and INRA005). Seventy alleles were detected across the six loci. Total number of alleles per locus (TNA) varied from 3 (INRA005 locus) to 16 (ETH 152 locus). The mean number of allele (MNA) across the six loci in Iraqi indigenous buffalo was 11.4. The locus ETHI52 was the most polymorphic marker according to its number of allele (16), the expected heterozygosity (0.86) and polymorphism information content (0.80) number of alleles (3), expected Heterozygosity (0.1-0.2) and polymorphism information content (0.1-0.2). Results showed that these markers were suitable in population genetics researches. It was concluded that a high degree of genetic diversity exist in the Iraqi buffalo populations.