期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
科学发展观贯彻落实中多主体行为博弈建模研究 被引量:1
1
作者 张道武 吴劲松 《运筹与管理》 CSCD 2008年第2期57-61,共5页
本文受到有关地方政府行为研究文献[1—3]启发,试图利用多人博弈理论对科学发展观的贯彻落实机制进行定量化研究,揭示行为主体、特别是对起至关重要作用的地方政府的行为进行描述和分析,披露其短期内不情愿贯彻落实科学发展观的制度... 本文受到有关地方政府行为研究文献[1—3]启发,试图利用多人博弈理论对科学发展观的贯彻落实机制进行定量化研究,揭示行为主体、特别是对起至关重要作用的地方政府的行为进行描述和分析,披露其短期内不情愿贯彻落实科学发展观的制度原因,并提出进一步提高总体收益的模型优化建议。 展开更多
关键词 技术经济 科学发展观 贯彻落实机制 人博弈理论
下载PDF
Markov decision evolutionary game theoretic learning for cooperative sensing of unmanned aerial vehicles 被引量:9
2
作者 SUN ChangHao DUAN HaiBin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第8期1392-1400,共9页
As one of the major contributions of biology to competitive decision making, evolutionary game theory provides a useful tool for studying the evolution of cooperation. To achieve the optimal solution for unmanned aeri... As one of the major contributions of biology to competitive decision making, evolutionary game theory provides a useful tool for studying the evolution of cooperation. To achieve the optimal solution for unmanned aerial vehicles (UAVs) that are car- rying out a sensing task, this paper presents a Markov decision evolutionary game (MDEG) based learning algorithm. Each in- dividual in the algorithm follows a Markov decision strategy to maximize its payoff against the well known Tit-for-Tat strate- gy. Simulation results demonstrate that the MDEG theory based approach effectively improves the collective payoff of the roam. The proposed algorithm can not only obtain the best action sequence but also a sub-optimal Markov policy that is inde- pendent of the game duration. Furthermore, the paper also studies the emergence of cooperation in the evolution of self-regarded UAVs. The results show that it is the adaptive ability of the MDEG based approach as well as the perfect balance between revenge and forgiveness of the Tit-for-Tat strategy that the emergence of cooperation should be attributed to. 展开更多
关键词 unmanned aerial vehicles (UAVs) iterated prisoner's dilemma (IPD) Markov decision evolutionary game (MDEG) replicator dynamics COOPERATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部