期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于形状无关纹理和Boosting学习的人口统计学分类
被引量:
2
1
作者
杨之光
艾海舟
《电子与信息学报》
EI
CSCD
北大核心
2008年第3期721-724,共4页
基于形状无关纹理和boosting学习,该文提出了对性别和年龄分类的方法,其中年龄被划分为儿童、青年、中年和老年4类。检测到人脸后,利用人脸配准的结果规范化人脸图像获得形状无关纹理。在此基础上提取Haar型特征、LBP直方图和Gabor Jet...
基于形状无关纹理和boosting学习,该文提出了对性别和年龄分类的方法,其中年龄被划分为儿童、青年、中年和老年4类。检测到人脸后,利用人脸配准的结果规范化人脸图像获得形状无关纹理。在此基础上提取Haar型特征、LBP直方图和Gabor Jet3种特征,通过boosting学习分别训练分类器。实验表明,LBP直方图特征能够鲁棒地区分儿童和老人,Haar型特征用作区分青年和中年人则更为有效,而Gabor Jet特征更适于性别分类。
展开更多
关键词
人口统计学分类
人脸图像处理
BOOSTING
下载PDF
职称材料
题名
基于形状无关纹理和Boosting学习的人口统计学分类
被引量:
2
1
作者
杨之光
艾海舟
机构
清华大学计算机系
出处
《电子与信息学报》
EI
CSCD
北大核心
2008年第3期721-724,共4页
基金
国家自然科学基金(60332010
60673107)资助课题
文摘
基于形状无关纹理和boosting学习,该文提出了对性别和年龄分类的方法,其中年龄被划分为儿童、青年、中年和老年4类。检测到人脸后,利用人脸配准的结果规范化人脸图像获得形状无关纹理。在此基础上提取Haar型特征、LBP直方图和Gabor Jet3种特征,通过boosting学习分别训练分类器。实验表明,LBP直方图特征能够鲁棒地区分儿童和老人,Haar型特征用作区分青年和中年人则更为有效,而Gabor Jet特征更适于性别分类。
关键词
人口统计学分类
人脸图像处理
BOOSTING
Keywords
Demographical classification
Face image processing
Boosting
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于形状无关纹理和Boosting学习的人口统计学分类
杨之光
艾海舟
《电子与信息学报》
EI
CSCD
北大核心
2008
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部