Objective] The research aimed to assess the development potential of ar-tificial precipitation in Liaoning Province. [Method] The evaluation method of cloud water resource for precipitation enhancement potential was u...Objective] The research aimed to assess the development potential of ar-tificial precipitation in Liaoning Province. [Method] The evaluation method of cloud water resource for precipitation enhancement potential was used. [Result] The annu-al total precipitation enhancement potential by cloud water resource in the air in 2013 was 1.23 bil ion tons in Liaoning, and cloud water resource for precipitation enhancement was 1.63 bil ion tons. [Conclusion] The spatial and temporal distribution for development potential of cloud water resource in the air was very uneven in Liaoning Province, and the mainly period was during spring and autumn. It wil be received obvious effect in the two seasons. In order to compensate for the restric-tion of the operational capability lack on cloud water resource development, we need to continue to improve the operation capacity building.展开更多
To ensure the effectiveness of the operation of artificial precipitation enhancement, a potential region for the operation should be determined in advance.As cloud microphysical measurements needed for the determinati...To ensure the effectiveness of the operation of artificial precipitation enhancement, a potential region for the operation should be determined in advance.As cloud microphysical measurements needed for the determination of the potential region of cloud seeding are not available before the operation of routine precipitation enhancement, a new method based on the growth process of ice crystal is put forward for determining the potential region using the numerical weather prediction model output.The ice supersaturation, accumulated water vapor within minus temperature layer (≥9 mm), and upward water vapor transportation are adopted as criteria to determine the potential time, height and region of cloud seeding, and the real-time radar images are applied to make decisions on the seeding commanding.The criteria and Doppler radar images are studied in a case of precipitation enhancement characterized by significant water vapor supply from the north part of a tropical cyclone in the northwest Pacific, which shows that the ocean plays a crucial role in the advection transportation of water vapor to the potential region of the coastal area.The study presents a new method to determine the potential region of precipitation enhancement using macro-physical quantities under ice crystal growth environment.The method possesses a clear physical significance and can be readily applied with the required and easily predicted parameters.展开更多
基金Supported by "Perfecting CWR-PEP Method" from Science Research Project of Liaoning Provincial Meteorological Bureau~~
文摘Objective] The research aimed to assess the development potential of ar-tificial precipitation in Liaoning Province. [Method] The evaluation method of cloud water resource for precipitation enhancement potential was used. [Result] The annu-al total precipitation enhancement potential by cloud water resource in the air in 2013 was 1.23 bil ion tons in Liaoning, and cloud water resource for precipitation enhancement was 1.63 bil ion tons. [Conclusion] The spatial and temporal distribution for development potential of cloud water resource in the air was very uneven in Liaoning Province, and the mainly period was during spring and autumn. It wil be received obvious effect in the two seasons. In order to compensate for the restric-tion of the operational capability lack on cloud water resource development, we need to continue to improve the operation capacity building.
基金the support from the Meteoro-logical Science and Technology Research Project (2009-sdqz05),Shandong Meteorological Bureau
文摘To ensure the effectiveness of the operation of artificial precipitation enhancement, a potential region for the operation should be determined in advance.As cloud microphysical measurements needed for the determination of the potential region of cloud seeding are not available before the operation of routine precipitation enhancement, a new method based on the growth process of ice crystal is put forward for determining the potential region using the numerical weather prediction model output.The ice supersaturation, accumulated water vapor within minus temperature layer (≥9 mm), and upward water vapor transportation are adopted as criteria to determine the potential time, height and region of cloud seeding, and the real-time radar images are applied to make decisions on the seeding commanding.The criteria and Doppler radar images are studied in a case of precipitation enhancement characterized by significant water vapor supply from the north part of a tropical cyclone in the northwest Pacific, which shows that the ocean plays a crucial role in the advection transportation of water vapor to the potential region of the coastal area.The study presents a new method to determine the potential region of precipitation enhancement using macro-physical quantities under ice crystal growth environment.The method possesses a clear physical significance and can be readily applied with the required and easily predicted parameters.