Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for ...Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for soiI water utiIization in eucalyptus pIanting in the red soiI hiI y region of South China. [Method] In the same cIimatic region, soiI sampIes were coI ected from surface soiI Iayer (A), iI uvial horizon (B) and parent material horizon (C) in the upper sIope, middIe sIope and Iower sIope of eucalyptus pIantation, native forest and pine forest, respectiveIy, to determine the soiI porosity and soiI water content and analyze changes and various infIuencing factors of soiI water content in horizontal and vertical direction. [Result] Average soiI porosity in eucalyptus pIantation, native forest and pine forest was 45.9%, 41.4%and 55.3%, respectiveIy; soiI water content in these three forest stands was 13.3%, 13.4% and 15.5%, respectiveIy. In addition, soiI water content in these three forest stands exhibited no significant differences (P>0.05) among different soiI profiIes and sIope positions, but soiI water content in surface soiI Iayer varied significantIy (P<0.05) among different forest stands; in the horizontal direction, soiI water content exerted an extremeIy significant positive correIation with total coverage. [Conclusion] Total coverage of canopy Iayer, herb and Iitter Iayer is one of the most critical fac-tors affecting the changes of soiI water content in surface soiI Iayer of forest stands.展开更多
Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (...Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (SSC) could provide relevant structural information about constructed Technosols, such as the water holding capacity of each pore system (macropores and micropores). The objectives of this study were (i) to evaluate the SSC and water retention curve (WRC) to describe the structure of constructed Tech- nosols and (ii) to understand the influence of organic matter content on soil hydro-structural properties. In this study, Technosols were obtained by mixing green waste compost (GWC) with the material excavated from deep horizons of soil (EDH). The CWC was mixed with EDH in six different volumetric percentages from 0% to 50% (GWC/total). The GWC and EDH exhibited highly divergent hydro-structural properties: the SSC was hyperbolic for GWC and sigmoid for EDH. All six mixture treatments (0%, 10%, 20%, 30%, 40% and 50% GWC) exhibited the classical sigmoid shape, revealing two embedded levels of pore systems. The 20% GWC treatment was hydro-structurally similar to the 30% and 40% GWC treatments; so, a large quantity of expansive GWC is unnecessary. The relation with the GWC percentage was a second-degree equation for volumetric available water in micropores, but was linear for volumetric available water in macropores and total volumetric available water. Total volumetric available water in the 50% GWC treatment was twice as high as that in the 0% GWC treatment. By combining SSCs and WRCs, increasing the GWC percentage increased water holding capacity by decreasing the maximum equivalent size of water-saturated micropores at the shrinkage limit and increasing the maximum equivalent size of water-saturated macropores, resulting in an increased range of pore diameter able to retain available water.展开更多
基金Supported by National Natural Science Foundation of China(U1033004)Open Fund of Key Laboratory of Plant Nutrition and Fertilizer,Ministry of Agriculture(2012-03)+3 种基金Major Science and Technology Project of Guangxi Zhuang Autonomous Region(GKZ1347001)Natural Science Foundation of Guangxi Zhuang Autonomous Region(2012GXNSFAA053066)Special Fund for the Basic Research and Operating Expenses of Guangxi Academy of Agricultural Sciences(GNK2013YM11,GNK2015YM11)Open Project of Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation(13B0201)~~
文摘Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for soiI water utiIization in eucalyptus pIanting in the red soiI hiI y region of South China. [Method] In the same cIimatic region, soiI sampIes were coI ected from surface soiI Iayer (A), iI uvial horizon (B) and parent material horizon (C) in the upper sIope, middIe sIope and Iower sIope of eucalyptus pIantation, native forest and pine forest, respectiveIy, to determine the soiI porosity and soiI water content and analyze changes and various infIuencing factors of soiI water content in horizontal and vertical direction. [Result] Average soiI porosity in eucalyptus pIantation, native forest and pine forest was 45.9%, 41.4%and 55.3%, respectiveIy; soiI water content in these three forest stands was 13.3%, 13.4% and 15.5%, respectiveIy. In addition, soiI water content in these three forest stands exhibited no significant differences (P>0.05) among different soiI profiIes and sIope positions, but soiI water content in surface soiI Iayer varied significantIy (P<0.05) among different forest stands; in the horizontal direction, soiI water content exerted an extremeIy significant positive correIation with total coverage. [Conclusion] Total coverage of canopy Iayer, herb and Iitter Iayer is one of the most critical fac-tors affecting the changes of soiI water content in surface soiI Iayer of forest stands.
基金the University of Damascus, Syria, for financial support of the Ph.D.(No.1473)
文摘Constructed Technosols may be an alternative for creating urban green spaces. However, the hydro-structural properties emer- ging from the assembly of artefacts have never been documented. The soil shrinkage curve (SSC) could provide relevant structural information about constructed Technosols, such as the water holding capacity of each pore system (macropores and micropores). The objectives of this study were (i) to evaluate the SSC and water retention curve (WRC) to describe the structure of constructed Tech- nosols and (ii) to understand the influence of organic matter content on soil hydro-structural properties. In this study, Technosols were obtained by mixing green waste compost (GWC) with the material excavated from deep horizons of soil (EDH). The CWC was mixed with EDH in six different volumetric percentages from 0% to 50% (GWC/total). The GWC and EDH exhibited highly divergent hydro-structural properties: the SSC was hyperbolic for GWC and sigmoid for EDH. All six mixture treatments (0%, 10%, 20%, 30%, 40% and 50% GWC) exhibited the classical sigmoid shape, revealing two embedded levels of pore systems. The 20% GWC treatment was hydro-structurally similar to the 30% and 40% GWC treatments; so, a large quantity of expansive GWC is unnecessary. The relation with the GWC percentage was a second-degree equation for volumetric available water in micropores, but was linear for volumetric available water in macropores and total volumetric available water. Total volumetric available water in the 50% GWC treatment was twice as high as that in the 0% GWC treatment. By combining SSCs and WRCs, increasing the GWC percentage increased water holding capacity by decreasing the maximum equivalent size of water-saturated micropores at the shrinkage limit and increasing the maximum equivalent size of water-saturated macropores, resulting in an increased range of pore diameter able to retain available water.