Investigation of the above-ground biomass allocation patterns on Scots pine plantations is critical for quantifying the productivity and carbon cycle of forest ecosystems. We estimated above-ground biomass and net pri...Investigation of the above-ground biomass allocation patterns on Scots pine plantations is critical for quantifying the productivity and carbon cycle of forest ecosystems. We estimated above-ground biomass and net primary production of a 25-year-old Pinus sylvestris L. (Scots pine) plantation, in a semi-arid region of Mongolia. The above-ground biomass of sample trees was divided into stem wood, stem bark, live branches, dead branches and needles. Total biomass for the stand was only 18.03 Mg ha1, of which 47.6% was found in stem wood, 25.8% in live branches and 14.8% in needles. The growth rate of the Scots pine plantation in the study region was relatively low compared with other regions. In the study area, it was observed that the rate of biomass accumulation in the plantation was very slow; this can be explained by very limited growing conditions and intensive crown closure. The results from this study indicate that it may be necessary to carry out thinning to increase biomass production by reducing competition between trees in the Scotch pine plantation.展开更多
The biomass and energy production of Casuarina equisetifolia plantations aged 14 were studied in Huian County, Fujian Province, Southeast of China. The standing crop biomass was 152.60 t/ha, in which the biomass of bo...The biomass and energy production of Casuarina equisetifolia plantations aged 14 were studied in Huian County, Fujian Province, Southeast of China. The standing crop biomass was 152.60 t/ha, in which the biomass of bole was 67.02 t/ha, accounting for 43.94 % of the total, while that of root was 36.83 t/ha and 24.14 %, respectively. Net primary productivity was 10.17t/(ha.a).The range of gross caloric of components was 19.29~20.23 kJ/g, with the average 19.70 kJ/g. The standing crop energy was 2 987×10^6 kJ/ha. Net energy production was 196.8×10^6 kJ/ha, while solar energy conversion efficiency was 0.90%.展开更多
文摘Investigation of the above-ground biomass allocation patterns on Scots pine plantations is critical for quantifying the productivity and carbon cycle of forest ecosystems. We estimated above-ground biomass and net primary production of a 25-year-old Pinus sylvestris L. (Scots pine) plantation, in a semi-arid region of Mongolia. The above-ground biomass of sample trees was divided into stem wood, stem bark, live branches, dead branches and needles. Total biomass for the stand was only 18.03 Mg ha1, of which 47.6% was found in stem wood, 25.8% in live branches and 14.8% in needles. The growth rate of the Scots pine plantation in the study region was relatively low compared with other regions. In the study area, it was observed that the rate of biomass accumulation in the plantation was very slow; this can be explained by very limited growing conditions and intensive crown closure. The results from this study indicate that it may be necessary to carry out thinning to increase biomass production by reducing competition between trees in the Scotch pine plantation.
文摘The biomass and energy production of Casuarina equisetifolia plantations aged 14 were studied in Huian County, Fujian Province, Southeast of China. The standing crop biomass was 152.60 t/ha, in which the biomass of bole was 67.02 t/ha, accounting for 43.94 % of the total, while that of root was 36.83 t/ha and 24.14 %, respectively. Net primary productivity was 10.17t/(ha.a).The range of gross caloric of components was 19.29~20.23 kJ/g, with the average 19.70 kJ/g. The standing crop energy was 2 987×10^6 kJ/ha. Net energy production was 196.8×10^6 kJ/ha, while solar energy conversion efficiency was 0.90%.