期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
使用人工神经网络预测电缆测井
1
《国外测井技术》 2024年第2期23-23,共1页
1.公开(公告)号:US20230323760A1。摘要:Methods and systems,including computer programs encoded on a computer storage medium are described for implementing a system that predicts wireline logs used in well drlling operat... 1.公开(公告)号:US20230323760A1。摘要:Methods and systems,including computer programs encoded on a computer storage medium are described for implementing a system that predicts wireline logs used in well drlling operations at a subsurface region. 展开更多
关键词 COMPUTER operations 人工神经网络预测
下载PDF
应税销售额人工神经网络预测模型 被引量:4
2
作者 薛荣芳 魏海鸥 耿博 《税务研究》 CSSCI 北大核心 2002年第11期64-66,共3页
文章以商贸企业增值税申报中的应税销售额为研究对象,研究建立了一种基于BP神经网络和非线性模型相复合的应税销售额预测模型。计算表明,该模型能较为准确地模拟预测商贸企业每个月的应税销售额变化情况。
关键词 应税销售额 人工神经网络预测模型 商贸企业 增值税
原文传递
基于人工神经网络的图书需求量模型研究
3
作者 丑楚 王旭明 《图书馆界》 2018年第1期1-6,共6页
通过人工神经网络的径向基函数网络(RBF),构建了图书需求量模型,通过模型得出的数据分析报告,可以预测出图书馆的文献流通量。本研究可以给图书馆的采购人员提供更精准的文献与数据采访信息,给读者提供更具有针对性的文献资源。
关键词 人工神经网络/图书馆流通量预测 图书需求量
下载PDF
灰色神经网络组合模型在庆安县年降雨量预测中的应用 被引量:11
4
作者 任晔 徐淑琴 《节水灌溉》 北大核心 2012年第9期24-25,29,共3页
采用灰色神经网络对黑龙江省庆安县年降雨量进行预测建模,利用灰色GM(1.1)模型"贫信息"和神经网络非线性函数映射能力优秀的特性,避免了灰色GM(1.1)模型对预测拟合精度低的问题。结果表明灰色神经网络组合模型的平均相对误差... 采用灰色神经网络对黑龙江省庆安县年降雨量进行预测建模,利用灰色GM(1.1)模型"贫信息"和神经网络非线性函数映射能力优秀的特性,避免了灰色GM(1.1)模型对预测拟合精度低的问题。结果表明灰色神经网络组合模型的平均相对误差为0.012 2,高于灰色GM(1.1)模型的平均相对误差0.153 7,预测精度较高,并且算法简便,拓宽了灰色预测模型的应用范围。 展开更多
关键词 GM(1.1)灰色预测模型BP人工神经网络 灰色神经网络组合模型 年降雨量 预测
下载PDF
爆破震动速度峰值的预测 被引量:24
5
作者 杨佑发 崔波 《振动与冲击》 EI CSCD 北大核心 2009年第10期195-198,共4页
结合在重庆测量的42组爆破数据,针对规程里所用的波速预测经验公式,采用经验公式法、基函数回归方法以及神经网络法对爆破地震效应进行了预测。基函数回归预测法要比经验公式预测法好,比经验公式迭代法稍差,但基函数回归法的使用要方便... 结合在重庆测量的42组爆破数据,针对规程里所用的波速预测经验公式,采用经验公式法、基函数回归方法以及神经网络法对爆破地震效应进行了预测。基函数回归预测法要比经验公式预测法好,比经验公式迭代法稍差,但基函数回归法的使用要方便些。人工神经网络可用于爆破地震波的三向速度峰值预测,从检验样本值与预测结果值之间的相对误差可以看出,人工神经网络预测法的精度要高于基函数回归和经验公式法。同时,对于需要考虑影响震动强度多因素变量的情况,在神经网络中通过修改输入参量即可解决爆破多参量的问题。为爆破地震效应的预测及推广应用提供了有效途径。 展开更多
关键词 爆破地震效应 经验公式法 基函数回归预测 人工神经网络预测
下载PDF
电力系统短期负荷组合预测 被引量:2
6
作者 彭慧敏 赵菁 +2 位作者 袁旭峰 张家亮 谢维廉 《贵州工业大学学报(自然科学版)》 CAS 2004年第1期53-57,共5页
基于三种单一预测模型,给出了电力系统短期负荷组合预测模型。为求解固定权系数,引入智能优化算法求解。通过计算结果比较表明,组合预测法具有较强的实用性和优越性。
关键词 电力系统 负荷预测 人工神经网络预测 灰色预测 组合预测
下载PDF
完整桩极限承载力的偏最小二乘回归预测法
7
作者 郑大叶 钱德玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第6期1248-1252,共5页
关于完整桩轴向极限载力Qu与桩长L、桩径d、桩的阻尼自振基频f1、桩的应力波波速c以及桩的单位动刚度Kd等参数,已知Qu的大小与上述5个参数存在一定的关系,现采用偏最小二乘回归方法对其进行描述。偏最小二乘回归方法是近年来产生和发展... 关于完整桩轴向极限载力Qu与桩长L、桩径d、桩的阻尼自振基频f1、桩的应力波波速c以及桩的单位动刚度Kd等参数,已知Qu的大小与上述5个参数存在一定的关系,现采用偏最小二乘回归方法对其进行描述。偏最小二乘回归方法是近年来产生和发展的一个具有广泛适用性的多元统计分析方法。其特有的选择因子方式与传统方法迥然不同,而其计算量比传统方法都小。它意义明确,计算简单,建模效果好,解释性强,日益成为工程技术人员和经济管理工作者能够熟练掌握的实用工具。 展开更多
关键词 完整桩 极限承载力 偏最小二乘回归预测 多元统计分析 人工神经网络预测
下载PDF
基于青少年视觉感知的中学体育馆室内环境预测与优化
8
作者 王太洋 罗鹏 +1 位作者 沈晓莹 曾献麒 《当代建筑》 2022年第12期40-45,共6页
本文立足于解决青少年在校园体育馆中开展体育活动中的人因工程学问题,从空间视觉感知角度出发,提取影响中学生运动心理的建筑空间设计强相关要素,通过虚拟现实实验,建立建筑空间环境因子预测模型。最后,本文利用遗传算法,在青少年视觉... 本文立足于解决青少年在校园体育馆中开展体育活动中的人因工程学问题,从空间视觉感知角度出发,提取影响中学生运动心理的建筑空间设计强相关要素,通过虚拟现实实验,建立建筑空间环境因子预测模型。最后,本文利用遗传算法,在青少年视觉感知优化目标下,建立中学体育馆室内环境优化设计方法,并提出设计策略,以期促进青少年积极参与体育运动,为中学体育馆建设发展提供理论支撑。 展开更多
关键词 视觉感知 青少年 中学体育馆 人工神经网络预测
下载PDF
基于温度资料的参考作物蒸发蒸腾量计算方法 被引量:34
9
作者 丁加丽 彭世彰 +2 位作者 徐俊增 缴锡云 罗玉峰 《河海大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期633-637,共5页
针对利用FAO56-PM法计算参考作物蒸发蒸腾量ET0时气象资料需求往往不易满足的问题,研究了温度法及基于温度资料的BP人工神经网络预测模型.以FAO56-PM法ET0计算值为标准,比较分析了Hargreaves法、改进的Thornthwaite法、简化的FAO56-PM... 针对利用FAO56-PM法计算参考作物蒸发蒸腾量ET0时气象资料需求往往不易满足的问题,研究了温度法及基于温度资料的BP人工神经网络预测模型.以FAO56-PM法ET0计算值为标准,比较分析了Hargreaves法、改进的Thornthwaite法、简化的FAO56-PM法以及Mc cloud法在我国湿润气候区的应用效果,评价了校正后的温度法以及基于温度资料的BP人工神经网络预测模型在该气候区的适用性.结果表明,在ET0较小时,Hargreaves法、改进的Thornthwaite法和简化的FAO56-PM法计算值较FAO56-PM法偏大,在ET0较大时较FAO56-PM法偏小;改进后的Thornthwaite法与FAO56-PM法最为接近,Mc cloud法与FAO56-PM法的计算结果差异最大;除Mc cloud法外,校正后的温度法检验合格率较高,具有较好的地区适用性;基于温度资料的BP人工神经网络预测模型具有较高的预测精度,结果好于校正后的Thornthwaite法和Mc cloud法,可应用于只有温度资料时湿润气候区ET0的预测. 展开更多
关键词 参考作物蒸发蒸腾量 温度法 BP人工神经网络预测模型 湿润气候区
下载PDF
中国制造业产业政策实施有效性评价 被引量:5
10
作者 唐晓华 张欣钰 陈阳 《科技进步与对策》 CSSCI 北大核心 2017年第10期60-68,共9页
产业政策是市场经济国家普遍采用的一种公共调节政策,产业政策有效性评价是检验政策实施效果的基本途径。在合理构建制造业产业政策绩效评价指标体系的基础上,运用灰色关联神经网络智能算法对2005-2014年各指标数据进行预测,再利用差值... 产业政策是市场经济国家普遍采用的一种公共调节政策,产业政策有效性评价是检验政策实施效果的基本途径。在合理构建制造业产业政策绩效评价指标体系的基础上,运用灰色关联神经网络智能算法对2005-2014年各指标数据进行预测,再利用差值对比法对2005-2014年中国制造业产业政策作用效力进行综合评价。分别从产业结构、组织、科技、布局角度实证分析了制造业在转型升级过程中产业政策实施绩效水平及其演进阶段性特征,可为今后制定合理的制造业产业政策提供科学的理论依据。 展开更多
关键词 制造业产业政策 差值对比评价 有效性评价 人工神经网络预测
下载PDF
定量定性相结合的企业综合预警方法研究 被引量:4
11
作者 关键 关键 《西安财经学院学报》 2004年第1期48-52,共5页
本文在理论与实践的基础上提出了定量定性相结合的企业综合预警方法。首先应用人工神经网络对企业进行定量预警,并且简要分析了误警概率和虚警概率,然后利用模糊综合评价法对企业环境进行定性预警,最后将两者结合起来达到综合预警的目的。
关键词 企业 定量 定性 综合预警方法 经营风险 预警流程 预警模型 集值统计数学模型 人工神经网络预测方法 预警信号系统 多级模糊综合评判方法
下载PDF
Neural network approach to predicting mercury emission from utility boiler
12
作者 杨宏旻 周波 《Journal of Southeast University(English Edition)》 EI CAS 2008年第1期55-58,共4页
The feasibility of using an ANN method to predict the mercury emission and speciation in the flue gas of a power station under un-tested combustion/operational conditions is evaluated. Based on existing field testing ... The feasibility of using an ANN method to predict the mercury emission and speciation in the flue gas of a power station under un-tested combustion/operational conditions is evaluated. Based on existing field testing datasets for the emissions of three utility boilers, a 3-layer back-propagation network is applied to predict the mercury speciation at the stack. The whole prediction procedure includes: collection of data, structuring an artificial neural network (ANN) model, training process and error evaluation. A total of 59 parameters of coal and ash analyses and power plant operating conditions are treated as input variables, and the actual mercury emissions and their speciation data are used to supervise the training process and verify the performance of prediction modeling. The precision of model prediction ( root- mean-square error is 0. 8 μg/Nm3 for elemental mercury and 0. 9 μg/Nm3 for total mercury) is acceptable since the spikes of semi- mercury continuous emission monitor (SCEM) with wet conversion modules are taken into consideration. 展开更多
关键词 mercury speciations electric utility boiler PREDICTION artificial neural network
下载PDF
《德国大地测量杂志》2002,76(5)要目
13
作者 周琪校 《导航定位学报》 2002年第2期84-84,共1页
H. Schuh, M. Ulrich, D. Egger, J. Mueller, W. Schwegmann: Prediction of Earth orientation parameters by artificial neural networks: 247-258 利用人工神经网络预测地球定向参数 K. -R. Koch, J. Kusche: Regularization of ge... H. Schuh, M. Ulrich, D. Egger, J. Mueller, W. Schwegmann: Prediction of Earth orientation parameters by artificial neural networks: 247-258 利用人工神经网络预测地球定向参数 K. -R. Koch, J. Kusche: Regularization of geopotential determination from satellite data by variance components: 259-268 展开更多
关键词 地球定向参数 人工神经网络预测 地球重力位 方差分量 卫星数据 大地测量 利用 确定 德国 要目
下载PDF
Prediction of 2A70 aluminum alloy flow stress based on BP artificial neural network 被引量:3
14
作者 刘芳 单德彬 +1 位作者 吕炎 杨玉英 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第4期368-371,共4页
The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-... The hot deformation behavior of 2A70 aluminum alloy was investigated by means of isothermal compression tests performed on a Gleeble-1500 thermal simulator over 360~480 ℃ with strain rates in the range of 0.01~1 s-1 and the largest deformation up to 60%. On the basis of experiments, a BP artificial neural network (ANN) model was constructed to predict 2A70 aluminum alloy flow stress. True strain, strain rates and temperatures were input to the network, and flow stress was the only output. The comparison between predicted values and experimental data showed that the relative error for the trained model was less than ±3% for the sampled data while it was less than ±6% for the non-sampled data. Furthermore, the neural network model gives better results than nonlinear regression method. It is evident that the model constructed by BP ANN can be used to accurately predict the 2A70 alloy flow stress. 展开更多
关键词 A70 aluminum alloy flow stress BP artificial neural network PREDICTION
下载PDF
An Artificial Neural Network-Based Snow Cover Predictive Modeling in the Higher Himalayas 被引量:1
15
作者 Bhogendra MISHRA Nitin K.TRIPATHI Muk S.BABEL 《Journal of Mountain Science》 SCIE CSCD 2014年第4期825-837,共13页
With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantita... With trends indicating increase in temperature and decrease in winter precipitation, a significant negative trend in snow-covered areas has been identified in the last decade in the Himalayas. This requires a quantitative analysis of the snow cover in the higher Himalayas. In this study, a nonlinear autoregressive exogenous model, an artificial neural network (ANN), was deployed to predict the snow cover in the Kaligandaki river basin for the next 30 years. Observed climatic data, and snow covered area was used to train and test the model that captures the gross features of snow under the current climate scenario. The range of the likely effects of climate change on seasonal snow was assessed in the Himalayas using downscaled temperature and precipitation change projection from - HadCM3, a global circulation model to project future climate scenario, under the AIB emission scenario, which describes a future world of very rapid economic growth with balance use between fossil and non-fossil energy sources. The results show that there is a reduction of 9% to 46% of snow cover in different elevation zones during the considered time period, i.e., 2Oll to 2040. The 4700 m to 52oo m elevation zone is the most affected area and the area higher than 5200 m is the least affected. Overall, however, it is clear from the analysis that seasonal snow in the Kaligandaki basin is likely to be subject to substantialchanges due to the impact of climate change. 展开更多
关键词 Snow cover Kaligandai river HIMALAYAS Artificial neural network Global warming CLIMATECHANGE
下载PDF
Prediction of Gas Holdup in Bubble Columns Using Artificial Neural Network 被引量:1
16
作者 吴元欣 罗湘华 +4 位作者 陈启明 李定或 李世荣 M.H.Al-Dahhan M.P.Dudukovic 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第2期162-165,共4页
A new correlation for the prediction of gas hold up in bubble columns was proposed based on an extensive experimental database set up from the literature published over last 30 years. The updated estimation method rel... A new correlation for the prediction of gas hold up in bubble columns was proposed based on an extensive experimental database set up from the literature published over last 30 years. The updated estimation method relying on artificial neural network, dimensional analysis and phenomenological approaches was used and the model prediction agreed with the experimental data with average relative error less than 10%. 展开更多
关键词 bubble column gas holdup artificial neural network CORRELATIONS
下载PDF
Prediction of blast boulders in open pit mines via multiple regression and artificial neural networks 被引量:5
17
作者 Ghiasi Majid Askarnejad Nematollah +1 位作者 Dindarloo Saeid R. Shamsoddini Hamed 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第2期183-184,共2页
The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boul... The most important objective of blasting in open pit mines is rock fragmentation.Prediction of produced boulders(oversized crushed rocks) is a key parameter in designing blast patterns.In this study,the amount of boulder produced in blasting operations of Golegohar iron ore open pit mine,Iran was predicted via multiple regression method and artificial neural networks.Results of 33 blasts in the mine were collected for modeling.Input variables were:joints spacing,density and uniaxial compressive strength of the intact rock,burden,spacing,stemming,bench height to burden ratio,and specific charge.The dependent variable was ratio of boulder volume to pattern volume.Both techniques were successful in predicting the ratio.In this study,the multiple regression method was superior with coefficient of determination and root mean squared error values of 0.89 and 0.19,respectively. 展开更多
关键词 Blast boulder Artificial neural networks Multiple regression Golegohar iron ore mine
下载PDF
Prediction for asphalt pavement water film thickness based on artificial neural network 被引量:4
18
作者 Ma Yaolu Geng Yanfen +1 位作者 Chen Xianhua Lu Yankun 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期490-495,共6页
In order to study the variation o f the asphalt pavement water film thickness influenced by multi-factors,anew method for predicting water film thickness was developed by the combination o f the artificial neural netw... In order to study the variation o f the asphalt pavement water film thickness influenced by multi-factors,anew method for predicting water film thickness was developed by the combination o f the artificial neural network(ANN)a d two-dimensional shallow water equations based on hydrodynamic theory.Multi-factors included the rainfall intensity,pavement width,cross slope,longitudinal slope a d pavement roughness coefficient.The two-dimensional hydrodynamic method was validated by a natural rainfall event.Based on the design scheme o f Shen-Sha expressway engineering project,the limited training data obtained by the two-dimensional hydrodynamic simulation model was used to predict water film thickness.Furthermore,the distribution of the water film thickness influenced by multi-factors on the pavement was analyzed.The accuracy o f the ANN model was verified by the18sets o f data with a precision o f0.991.The simulation results indicate that the water film thickness increases from the median strip to the edge o f the pavement.The water film thickness variation is obviously influenced by rainfall intensity.Under the condition that the pavement width is20m and t e rainfall intensity is3m m/h,t e water film thickness is below10mm in the fast lane and20mm in t e lateral lane.Athough there is fluctuation due to the amount oftraining data,compared with the calculation on the basis o f the existing criterion and theory,t e ANN model exhibits a better performance for depicting the macroscopic distribution of the asphalt pavement water film. 展开更多
关键词 pavement engineering water film thickness artificial neural network hydrodynamic method prediction analysis
下载PDF
Combined ANN prediction model for failure depth of coal seam floors 被引量:5
19
作者 WANG Lian-guo ZHANG Zhi-kang +4 位作者 LU Yin-long YANG Hong-bo YANG Sheng-qiang SUN Jian ZHANG Jin-yao 《Mining Science and Technology》 EI CAS 2009年第5期684-688,共5页
Failure depth of coal seam floors is one of the important considerations that must be kept in mind when mining is carried out above a confined aquifer. In order to study the factors that affect the failure depth of co... Failure depth of coal seam floors is one of the important considerations that must be kept in mind when mining is carried out above a confined aquifer. In order to study the factors that affect the failure depth of coal seam floors such as mining depth, coal seam pitch, mining thickness, workface length and faults, we propose a combined artificial neural networks (ANN) prediction model for failure depth of coal seam floors on the basis of existing engineering data by using genetic algorithms to train the ANN. A practical engineering application at the Taoyuan Coal Mine indicates that this method can effectively determine the network struc- ture and training parameters, with the predicted results agreeing with practical measurements. Therefore, this method can be applied to relevant engineering projects with satisfactory results. 展开更多
关键词 artificial neural networks (ANN) floor failure depth genetic algorithms PREDICTION
下载PDF
Predicting Model for Complex Production Process Based on Dynamic Neural Network 被引量:1
20
作者 许世范 王雪松 郝继飞 《Journal of China University of Mining and Technology》 2001年第1期20-23,共4页
Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutua... Based on the comparison of several methods of time series predicting, this paper points out that it is necessary to use dynamic neural network in modeling of complex production process. Because self feedback and mutual feedback are adopted among nodes at the same layer in Elman network, it has stronger ability of dynamic approximation, and can describe any non linear dynamic system. After the structure and mathematical description being given, dynamic back propagation (BP) algorithm of training weights of Elman neural network is deduced. At last, the network is used to predict ash content of black amber in jigging production process. The results show that this neural network is powerful in predicting and suitable for modeling, predicting, and controling of complex production process. 展开更多
关键词 dynamic neural network Elman network complex production process predicting model
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部