期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
无界区域上耦合sine-Gordon方程组的分裂局部人工边界条件
1
作者 谢冰 台怡农 李宏伟 《齐鲁工业大学学报》 CAS 2024年第4期72-80,共9页
研究了在等离子体物理学中有广泛应用的无界区域上耦合sine-Gordon方程组的数值解法,由于物理区域的无界性和方程组的非线性,使得常用的数值方法不能直接用于求解此问题。利用人工边界方法和算子分裂方法设计了合理的分裂局部人工边界条... 研究了在等离子体物理学中有广泛应用的无界区域上耦合sine-Gordon方程组的数值解法,由于物理区域的无界性和方程组的非线性,使得常用的数值方法不能直接用于求解此问题。利用人工边界方法和算子分裂方法设计了合理的分裂局部人工边界条件,解决了物理区域的无界性和方程组的非线性给数值计算带来的困难。无界区域上的Cauchy问题简化为有界区域上的初边值问题,从而可以利用有限差分方法进行数值求解。最后,通过数值算例验证了所设计边界条件的精确性和有效性,并模拟了多孤立波的传播。 展开更多
关键词 耦合sine-Gordon方程组 人工边界方法 算子分裂方法 无界区域 有限差分法
下载PDF
带波动算子的非线性薛定谔方程的人工边界条件 被引量:1
2
作者 赵鑫 胡云霞 李宏伟 《山东师范大学学报(自然科学版)》 CAS 2018年第4期388-395,共8页
本文研究带波动算子的非线性薛定谔方程在无界区域上的数值解.在无界区域上引入人工边界,基于算子分裂方法的统一方法在人工边界上构造合理的人工边界条件,将无界区域上的原问题简化为有界计算区域上的初边值问题,利用有限差分方法进行... 本文研究带波动算子的非线性薛定谔方程在无界区域上的数值解.在无界区域上引入人工边界,基于算子分裂方法的统一方法在人工边界上构造合理的人工边界条件,将无界区域上的原问题简化为有界计算区域上的初边值问题,利用有限差分方法进行数值离散.构造质量泛函分析了简化初边值问题的稳定性.最后,通过数值算例验证方法的有效性. 展开更多
关键词 带波动算子的非线性薛定谔方程 无界区域 人工边界方法 稳定性
下载PDF
The Influence of Surface Building's Relative Position on the Seismic Response of Subway Structures
3
作者 Li Fangjie Zhao Fengxin Zhang Yushan You Hongbing 《Earthquake Research in China》 2011年第2期250-259,共10页
By using the finite element method and viscoelastic artificial boundary, a soil-structure interaction system is established to simulate the influence of surface buildings on the seismic response of subway structures. ... By using the finite element method and viscoelastic artificial boundary, a soil-structure interaction system is established to simulate the influence of surface buildings on the seismic response of subway structures. The conditions of different relative positions between ground building and subway structure are analyzed. The result~ indicate that when considering the existence of surface buildings, the relative story displacements and internal forces of subway structures are changed greatly. Further the influence of surface buildings on subway structure changes as the distance increases. 展开更多
关键词 Subway structure Ground building Relative position Seismic response
下载PDF
A survey on artificial boundary method Dedicated to Professor Shi Zhong-Ci on the Occasion of his 80th Birthday 被引量:3
4
作者 HAN HouDe WU XiaoNan 《Science China Mathematics》 SCIE 2013年第12期2439-2488,共50页
The artificial boundary method is one of the most popular and effective numerical methods tor solving partial differential equations on unbounded domains, with more than thirty years development. The artificiM boundar... The artificial boundary method is one of the most popular and effective numerical methods tor solving partial differential equations on unbounded domains, with more than thirty years development. The artificiM boundary method has reached maturity in recent years. It has been applied to various problems in scientific and engineering computations, and the theoretical issues such as the convergence and error estimates of the artificial boundary method have been solved gradually. This paper reviews the development and discusses different forms of the artificial boundary method. 展开更多
关键词 artificial boundary method global artificial boundary condition local artificial boundary condi-tion discrete artificial boundary condition implicit artificial boundary condition nonlinear artificial boundarycondition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部