This paper presents a way for research on grasp planning of three fingered robot hands. According to the assortment of human hand grasping, two typical grasping poses for three finger grasps are summarized. The task...This paper presents a way for research on grasp planning of three fingered robot hands. According to the assortment of human hand grasping, two typical grasping poses for three finger grasps are summarized. The task requirements, the geometrical and physical features of the object and the information from the environment are synthesized. Grasp pose is deduced by task analysis, and the graspable plane is sought and determined. The process of grasp planning is finally carried out by determining three grasp points on the feasible grasp plane.展开更多
Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexter...Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.展开更多
Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless...Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.展开更多
To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar...To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar to those of human hands. Balancing these requirements involves a trade-off; ideal robotic hands have yet to sufficiently satisfy both requirements. Herein, a power allocation mechanism is proposed to improve the grip force without increasing the size or weight of robotic hands by using redundant DoFs during pinching motions. Additionally, this mechanism is applied to an actual five-fingered myoelectric hand, which produces seven types of motions necessary for activities of daily living and realizes a -60% improvement in fingertip force, allowing three fingers to pinch objects exceeding 1 kg.展开更多
137 Cs is an artificial radionuclide with a half-life of 30.2 years,which was released into the environment as a byproduct of atmospheric testing of nuclear weapons during the period of 1950s to 1970s with a peak depo...137 Cs is an artificial radionuclide with a half-life of 30.2 years,which was released into the environment as a byproduct of atmospheric testing of nuclear weapons during the period of 1950s to 1970s with a peak deposition in 1963.137 Cs fallout was strongly and rapidly adsorbed by soil particles when it deposited on the ground mostly with precipitation.Its following movements will associate with the adsorbed particles.137 Cs tracing technique has been widely used in soil erosion and sedimentation studies since 1980s.This paper introduces the basis of the technique and shows several case studies of assessment of soil erosion rates,investigation of sediment sources and dating of reservoir deposits by using the technique in the Loess Plateau and the Upper Yangtze River Basin.展开更多
A smart Human Interface (HCI) replacing conventional mouse interface is proposed. The interface is able to control and command action with only hand. Four finger motions (left click, right dick, hold, drag) are u...A smart Human Interface (HCI) replacing conventional mouse interface is proposed. The interface is able to control and command action with only hand. Four finger motions (left click, right dick, hold, drag) are used to command the interface. Also the authors materialiae cursor movement control using image processing The measure what they use for inference is entropy of Electromyogram (EMG) signal, Gaussian modeling and likelihood estimation. In image processing for cursor control, they use color recognition to get the center point of finger tip from marker, and map the point onto cursor. Accuracy of finger movement inference is over 95% and cursor control works naturally without delay. They materlalize whole system to check its performance and utility.展开更多
Background:Robotic surgery is a complex innovation intervention.Recently,the number of robotic surgery case reports is increasing,but there is unclear on its reporting and methodological quality.Methods:The PubMed dat...Background:Robotic surgery is a complex innovation intervention.Recently,the number of robotic surgery case reports is increasing,but there is unclear on its reporting and methodological quality.Methods:The PubMed database will be searched with high-specificity search strategy from Jan 1,2012 to Aug 1,2018 to identify relevant records.Microsoft Excel 2016 will be used to generate random number and to select 100 robotic surgery case reports according our eligibility criteria.A data extraction form will be used to extract relevant information including first author,year of publication,journal,etc.The CARE guideline and JBI checklist will be used to separately assess the reporting and methodological quality of included studies.The data extraction and assessment of quality will be completed by independent two authors and any disagreement will be resolved through discussion or consulting the third author.Stratified analyses will be conducted based on extracted information.Review Manager 5.3 software will be used to present the results of stratified analyses with Inverse-Variance random-effect model.Results:The study is ongoing and will be submitted to a peerreviewed journal.Conclusion:The present study will summarize evidence on the reporting and methodological quality of robotic surgery case reports,and provide reference for future case reports but not limited to robotic surgery.Ethics and dissemination:Ethical approval is not required because this study will not include any confidential personal data and interventions on the patients.The results of this study will be published in a peerreviewed publication.展开更多
The paper presents theoretical and experimental results on an original anthropomorphic gripping concept. Compared to the existing anthropomorphic grippers, this gripper is very simple, yet it has the advantage of high...The paper presents theoretical and experimental results on an original anthropomorphic gripping concept. Compared to the existing anthropomorphic grippers, this gripper is very simple, yet it has the advantage of high performance in terms of gripping possibilities and a very low manufacturing cost. Source of inspiration was the human hand, which is able to catch objects by only using two fingers. The analyzed anthropomorphic gripper has two fingers, with two phalanxes each, and is based on a new mechanism with articulated bars. The kinematic analysis performed on the gripping mechanism reveals the optimal displacement in the translational coupling, which was experimentally validated. The gripping possibilities were increased by attaching clamping jaws to each phalanx. The clamping jaws have been attached by means of spherical couplings, thus offering the possibility to catch objects with any type of surface. By carrying out gripping tests with different objects, we underline the importance of a safe use of the two-fingered anthropomorphic grippers in different applications. Due to the innovative mechanical structure, the gripper can insure the minimal gripping conditions, whilst the complexity of the objects that can be gripped make it suitable for the use in robots.展开更多
With the idea of mechatronic integration,a novel finger of the dextrous robot hand has been designed. The finger with nice envelop has four joints with three DOFs driven by three brushless DC motors with smaller size ...With the idea of mechatronic integration,a novel finger of the dextrous robot hand has been designed. The finger with nice envelop has four joints with three DOFs driven by three brushless DC motors with smaller size and more torque. The use of rigid gear head,bevel gears and linkage in the transmission system makes the finger more rigid. Abundant sensors such as joint angle sensors,joint torque sensors and temperature sensors are located in the finger. Integration and modularization are achieved at most by high integration of finger body,driving system,sensors and electronics.展开更多
文摘This paper presents a way for research on grasp planning of three fingered robot hands. According to the assortment of human hand grasping, two typical grasping poses for three finger grasps are summarized. The task requirements, the geometrical and physical features of the object and the information from the environment are synthesized. Grasp pose is deduced by task analysis, and the graspable plane is sought and determined. The process of grasp planning is finally carried out by determining three grasp points on the feasible grasp plane.
文摘Nowadays many anthropomorphic robotic hands have been put forward. These hands emphasize different aspects according to their applications. HIT Anthropomorphic Robotic Hand (ARhand) is a simple, lightweight and dexterous design per the requirements of anthropomorphic robots. Underactuated self-adaptive theory is adopted to decrease the number of motors and weight. The fingers of HIT ARhand with multi phalanges have the same size as those of an adult hand. Force control is realized with the position sensor, joint torque sensor and fingertip torque sensor. From the 3D model, the whole hand, with the low power consumption DSP control board integrated in it, will weigh only 500 g. It will be assembled on a BIT-Anthropomorphic Robot.
基金Project(2009AA04Z209) supported by the National High Technology Research and Development Program of ChinaProject(R1090674) supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(51075363) supported by the National Natural Science Foundation of China
文摘Based on flexible pneumatic actuator(FPA),bending joint and side-sway joint,a new kind of pneumatic dexterous robot finger was developed.The finger is equipped with one five-component force sensor and four contactless magnetic rotary encoders.Mechanical parts and FPAs are integrated,which reduces the overall size of the finger.Driven by FPA directly,the joint output torque is more accurate and the friction and vibration can be effectively reduced.An improved adaptive genetic algorithm(IAGA) was adopted to solve the inverse kinematics problem of the redundant finger.The statics of the finger was analyzed and the relation between fingertip force and joint torque was built.Finally,the finger force/position control principle was introduced.Tracking experiments of fingertip force/position were carried out.The experimental results show that the fingertip position tracking error is within ±1 mm and the fingertip force tracking error is within ±0.4 N.It is also concluded from the theoretical and experimental results that the finger can be controlled and it has a good application prospect.
文摘To be used as five-fingered myoelectric hands in daily living, robotic hands must be lightweight with the size of human hands. In addition, they must possess the DoFs (degrees of freedom) and high grip force similar to those of human hands. Balancing these requirements involves a trade-off; ideal robotic hands have yet to sufficiently satisfy both requirements. Herein, a power allocation mechanism is proposed to improve the grip force without increasing the size or weight of robotic hands by using redundant DoFs during pinching motions. Additionally, this mechanism is applied to an actual five-fingered myoelectric hand, which produces seven types of motions necessary for activities of daily living and realizes a -60% improvement in fingertip force, allowing three fingers to pinch objects exceeding 1 kg.
基金supported by National Natural Science Foundation of China (Grant No. 40971169,41101259)Ministry of Environmental Protectionof China (Grant No. 2009ZX07104-002-06)State Key Laboratory of Environmental Geochemistry (Grant No. SKLEG9008)
文摘137 Cs is an artificial radionuclide with a half-life of 30.2 years,which was released into the environment as a byproduct of atmospheric testing of nuclear weapons during the period of 1950s to 1970s with a peak deposition in 1963.137 Cs fallout was strongly and rapidly adsorbed by soil particles when it deposited on the ground mostly with precipitation.Its following movements will associate with the adsorbed particles.137 Cs tracing technique has been widely used in soil erosion and sedimentation studies since 1980s.This paper introduces the basis of the technique and shows several case studies of assessment of soil erosion rates,investigation of sediment sources and dating of reservoir deposits by using the technique in the Loess Plateau and the Upper Yangtze River Basin.
基金supported by the MKE(The Ministry of Knowledge Economy),Koreathe ITRC(Information Technology Research Center)support program supervised by the NIPA(National IT Industry Promotion Agency)(NIPA-2010-C1090-1021-0010)
文摘A smart Human Interface (HCI) replacing conventional mouse interface is proposed. The interface is able to control and command action with only hand. Four finger motions (left click, right dick, hold, drag) are used to command the interface. Also the authors materialiae cursor movement control using image processing The measure what they use for inference is entropy of Electromyogram (EMG) signal, Gaussian modeling and likelihood estimation. In image processing for cursor control, they use color recognition to get the center point of finger tip from marker, and map the point onto cursor. Accuracy of finger movement inference is over 95% and cursor control works naturally without delay. They materlalize whole system to check its performance and utility.
文摘Background:Robotic surgery is a complex innovation intervention.Recently,the number of robotic surgery case reports is increasing,but there is unclear on its reporting and methodological quality.Methods:The PubMed database will be searched with high-specificity search strategy from Jan 1,2012 to Aug 1,2018 to identify relevant records.Microsoft Excel 2016 will be used to generate random number and to select 100 robotic surgery case reports according our eligibility criteria.A data extraction form will be used to extract relevant information including first author,year of publication,journal,etc.The CARE guideline and JBI checklist will be used to separately assess the reporting and methodological quality of included studies.The data extraction and assessment of quality will be completed by independent two authors and any disagreement will be resolved through discussion or consulting the third author.Stratified analyses will be conducted based on extracted information.Review Manager 5.3 software will be used to present the results of stratified analyses with Inverse-Variance random-effect model.Results:The study is ongoing and will be submitted to a peerreviewed journal.Conclusion:The present study will summarize evidence on the reporting and methodological quality of robotic surgery case reports,and provide reference for future case reports but not limited to robotic surgery.Ethics and dissemination:Ethical approval is not required because this study will not include any confidential personal data and interventions on the patients.The results of this study will be published in a peerreviewed publication.
文摘The paper presents theoretical and experimental results on an original anthropomorphic gripping concept. Compared to the existing anthropomorphic grippers, this gripper is very simple, yet it has the advantage of high performance in terms of gripping possibilities and a very low manufacturing cost. Source of inspiration was the human hand, which is able to catch objects by only using two fingers. The analyzed anthropomorphic gripper has two fingers, with two phalanxes each, and is based on a new mechanism with articulated bars. The kinematic analysis performed on the gripping mechanism reveals the optimal displacement in the translational coupling, which was experimentally validated. The gripping possibilities were increased by attaching clamping jaws to each phalanx. The clamping jaws have been attached by means of spherical couplings, thus offering the possibility to catch objects with any type of surface. By carrying out gripping tests with different objects, we underline the importance of a safe use of the two-fingered anthropomorphic grippers in different applications. Due to the innovative mechanical structure, the gripper can insure the minimal gripping conditions, whilst the complexity of the objects that can be gripped make it suitable for the use in robots.
基金Sponsored by the High Technology Research and Development Program of China(Grant No.2008AA04Z203)Development Program for Outstanding Young Teachers in Harbin Institute of Technology(Grant No.HITQNJS.2008.010)
文摘With the idea of mechatronic integration,a novel finger of the dextrous robot hand has been designed. The finger with nice envelop has four joints with three DOFs driven by three brushless DC motors with smaller size and more torque. The use of rigid gear head,bevel gears and linkage in the transmission system makes the finger more rigid. Abundant sensors such as joint angle sensors,joint torque sensors and temperature sensors are located in the finger. Integration and modularization are achieved at most by high integration of finger body,driving system,sensors and electronics.