In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the d...In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results showthat the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network( PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation.展开更多
This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM), For this work, the proposed algorithm is composed of constricting AAMs and fitting t...This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM), For this work, the proposed algorithm is composed of constricting AAMs and fitting the models to the interest region. In training stage, according to the manual labeled feature points, the relative AAM is constructed and the corresponding average feature is obtained. In recognition stage, the interesting hand gesture region is firstly segmented by skin and movement cues. Secondly, the models are fitted to the image that includes the hand gesture, and the relative features are extracted. Thirdly, the classification is done by comparing the extracted features and average features. 30 different gestures of Chinese sign language are applied for testing the effectiveness of the method. The Experimental results are given indicating good performance of the algorithm.展开更多
The trained Gaussian mixture model is used to make skincolour segmentation for the input image sequences. The hand gesture region is extracted, and the relative normalization images are obtained by interpolation opera...The trained Gaussian mixture model is used to make skincolour segmentation for the input image sequences. The hand gesture region is extracted, and the relative normalization images are obtained by interpolation operation. To solve the proem of hand gesture recognition, Fuzzy-Rough based nearest neighbour(RNN) algorithm is applied for classification. For avoiding the costly compute, an improved nearest neighbour classification algorithm based on fuzzy-rough set theory (FRNNC) is proposed. The algorithm employs the represented cluster points instead of the whole training samples, and takes the hand gesture data's fuzziness and the roughness into account, so the campute spending is decreased and the recognition rate is increased. The 30 gestures in Chinese sign language alphabet are used for approving the effectiveness of the proposed algorithm. The recognition rate is 94.96%, which is better than that of KNN (K nearest neighbor)and Fuzzy- KNN (Fuzzy K nearest neighbor).展开更多
The dexterous hand is equiped with the flexible fiber as the optic sensor for recognition and identification of objects structured and non-structured environment.This simple and inexpensive method for object recogniti...The dexterous hand is equiped with the flexible fiber as the optic sensor for recognition and identification of objects structured and non-structured environment.This simple and inexpensive method for object recognition based on the optical fiber is presented in this paper.展开更多
基金The National Natural Science Foundation of China(No.6120134461271312+7 种基金6140108511301074)the Research Fund for the Doctoral Program of Higher Education(No.20120092120036)the Program for Special Talents in Six Fields of Jiangsu Province(No.DZXX-031)Industry-University-Research Cooperation Project of Jiangsu Province(No.BY2014127-11)"333"Project(No.BRA2015288)High-End Foreign Experts Recruitment Program(No.GDT20153200043)Open Fund of Jiangsu Engineering Center of Network Monitoring(No.KJR1404)
文摘In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results showthat the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network( PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation.
文摘This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM), For this work, the proposed algorithm is composed of constricting AAMs and fitting the models to the interest region. In training stage, according to the manual labeled feature points, the relative AAM is constructed and the corresponding average feature is obtained. In recognition stage, the interesting hand gesture region is firstly segmented by skin and movement cues. Secondly, the models are fitted to the image that includes the hand gesture, and the relative features are extracted. Thirdly, the classification is done by comparing the extracted features and average features. 30 different gestures of Chinese sign language are applied for testing the effectiveness of the method. The Experimental results are given indicating good performance of the algorithm.
文摘The trained Gaussian mixture model is used to make skincolour segmentation for the input image sequences. The hand gesture region is extracted, and the relative normalization images are obtained by interpolation operation. To solve the proem of hand gesture recognition, Fuzzy-Rough based nearest neighbour(RNN) algorithm is applied for classification. For avoiding the costly compute, an improved nearest neighbour classification algorithm based on fuzzy-rough set theory (FRNNC) is proposed. The algorithm employs the represented cluster points instead of the whole training samples, and takes the hand gesture data's fuzziness and the roughness into account, so the campute spending is decreased and the recognition rate is increased. The 30 gestures in Chinese sign language alphabet are used for approving the effectiveness of the proposed algorithm. The recognition rate is 94.96%, which is better than that of KNN (K nearest neighbor)and Fuzzy- KNN (Fuzzy K nearest neighbor).
文摘The dexterous hand is equiped with the flexible fiber as the optic sensor for recognition and identification of objects structured and non-structured environment.This simple and inexpensive method for object recognition based on the optical fiber is presented in this paper.