期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
一种基于肤色和深度的第一人称人手识别方法 被引量:5
1
作者 郭训力 俞扬 《计算机工程与应用》 CSCD 2014年第12期133-136,共4页
手是人类与外界交互的主要工具,因此在可穿戴增强现实系统中,引入手势操作将会为人机交互过程提供非常自然的操作体验。以往的手势识别,一方面并不是考虑应用在可穿戴增强现实的场景中,有着不同的视角差,另一方面往往只基于二维信息,而... 手是人类与外界交互的主要工具,因此在可穿戴增强现实系统中,引入手势操作将会为人机交互过程提供非常自然的操作体验。以往的手势识别,一方面并不是考虑应用在可穿戴增强现实的场景中,有着不同的视角差,另一方面往往只基于二维信息,而忽视三维深度信息。在传统的肤色模型基础上,融合了三维深度信息,构建了满足实时性要求的手势操作系统。 展开更多
关键词 增强现实 人手识别 颜色模型 深度 实时
下载PDF
基于红外图像的人手识别
2
作者 马继红 赵瑞林 +1 位作者 王川雪 马颂德 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 1995年第1期27-33,共7页
针对红外图像的特点,运用特征手的方法,并配合K-L变换高效提取主分量的方坛,实现了对人手图像进行计算机自动识别.给出特征手的基本原理。
关键词 红外图像 特征手 计算机自动识别 人手识别
下载PDF
基于PDE的人手识别跟踪系统设计及应用
3
作者 张天星 《湖南城市学院学报(自然科学版)》 CAS 2015年第3期139-141,共3页
本文利用概率统计方法和人手的几何特征设计了一套基于PDE的人手识别跟踪系统,并给出了该系统在游戏上的简单应用案例。
关键词 PED 几何特征 人手识别 跟踪
下载PDF
一种新的基于结构光的人体动作识别算法 被引量:2
4
作者 王一娇 路海明 谢朝霞 《控制工程》 CSCD 北大核心 2014年第6期949-953,共5页
基于深度图像可以方便的区分前景和背景,有效提高自然人机交互的性能。要实现面向大众的自然人机交互,需要深度摄像头在实时性、价格、适应环境等方面达到实用性。基于面结构光技术的深度摄像头实用性强,得到了迅速发展,其深度信息获取... 基于深度图像可以方便的区分前景和背景,有效提高自然人机交互的性能。要实现面向大众的自然人机交互,需要深度摄像头在实时性、价格、适应环境等方面达到实用性。基于面结构光技术的深度摄像头实用性强,得到了迅速发展,其深度信息获取基于图像块匹配算法,在计算每个像素点的深度时,需要在测量范围内进行逐点搜索、图像块匹配、寻优,带来大量运算,这些运算要通过高性能计算机或专用并行运算芯片才能达到实时性,导致了深度传感器成本的增加。本文提出了一种全新的人体动作识别方法,即利用结构光图像直接进行动作识别,从而避免了复杂的深度图计算环节,降低了计算量,并能够充分利用图像的3D信息。该方法通过分析结构光图案的偏移所产生断裂点信息,成功实现了人手定位及人手动作识别,并将其应用于UI界面模拟鼠标操作。实验结果表明了算法的有效性和可行性。 展开更多
关键词 结构光 断裂点信息 人手定位 人手动作识别
下载PDF
基于阵列式触觉传感器的操作意图实时感知 被引量:8
5
作者 李铁军 刘应心 +1 位作者 刘今越 杨冬 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第1期100-112,共13页
针对协作型机器人,自主研发了一款柔性阵列式触觉传感器,将其封装为可感知人手抓握姿态与力大小的触觉手柄,提出一种基于卷积神经网络(CNN)的可区分人手松抓握、紧抓握与无意间触碰触觉手柄3种模式状态的方法,识别准确率达到98.2%。提... 针对协作型机器人,自主研发了一款柔性阵列式触觉传感器,将其封装为可感知人手抓握姿态与力大小的触觉手柄,提出一种基于卷积神经网络(CNN)的可区分人手松抓握、紧抓握与无意间触碰触觉手柄3种模式状态的方法,识别准确率达到98.2%。提出一种可变导纳控制策略,利用人手抓握手柄状态,实时调节机械臂虚拟阻尼,基于此触觉手柄可实时感知人手局部变换姿态,准确估计操作者操作意图,并将局部感知信息传输给机器人控制其运动,以UR协作型机器人为实验平台,以触觉手柄为感知输入并进行人机交互实验,对机械臂运动精度做了评价。实验表明触觉手柄具有良好的意图感知能力。 展开更多
关键词 人机协作 触觉感知 人手抓握识别 意图理解
下载PDF
Kernel principal component analysis network for image classification 被引量:5
6
作者 吴丹 伍家松 +3 位作者 曾瑞 姜龙玉 Lotfi Senhadji 舒华忠 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期469-473,共5页
In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the d... In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results showthat the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network( PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation. 展开更多
关键词 deep learning kernel principal component analysis net(KPCANet) principal component analysis net(PCANet) face recognition object recognition handwritten digit recognition
下载PDF
Active Appearance Model Based Hand Gesture Recognition 被引量:1
7
作者 滕晓龙 于威威 刘重庆 《Journal of Donghua University(English Edition)》 EI CAS 2005年第4期67-71,共5页
This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM), For this work, the proposed algorithm is composed of constricting AAMs and fitting t... This paper addresses the application of hand gesture recognition in monocular image sequences using Active Appearance Model (AAM), For this work, the proposed algorithm is composed of constricting AAMs and fitting the models to the interest region. In training stage, according to the manual labeled feature points, the relative AAM is constructed and the corresponding average feature is obtained. In recognition stage, the interesting hand gesture region is firstly segmented by skin and movement cues. Secondly, the models are fitted to the image that includes the hand gesture, and the relative features are extracted. Thirdly, the classification is done by comparing the extracted features and average features. 30 different gestures of Chinese sign language are applied for testing the effectiveness of the method. The Experimental results are given indicating good performance of the algorithm. 展开更多
关键词 human-machine interaction hand gesture recognition AAM sign language.
下载PDF
Hand Gesture Recognition Based on Improved FRNN 被引量:1
8
作者 滕晓龙 王向阳 刘重庆 《Journal of Donghua University(English Edition)》 EI CAS 2005年第5期47-52,共6页
The trained Gaussian mixture model is used to make skincolour segmentation for the input image sequences. The hand gesture region is extracted, and the relative normalization images are obtained by interpolation opera... The trained Gaussian mixture model is used to make skincolour segmentation for the input image sequences. The hand gesture region is extracted, and the relative normalization images are obtained by interpolation operation. To solve the proem of hand gesture recognition, Fuzzy-Rough based nearest neighbour(RNN) algorithm is applied for classification. For avoiding the costly compute, an improved nearest neighbour classification algorithm based on fuzzy-rough set theory (FRNNC) is proposed. The algorithm employs the represented cluster points instead of the whole training samples, and takes the hand gesture data's fuzziness and the roughness into account, so the campute spending is decreased and the recognition rate is increased. The 30 gestures in Chinese sign language alphabet are used for approving the effectiveness of the proposed algorithm. The recognition rate is 94.96%, which is better than that of KNN (K nearest neighbor)and Fuzzy- KNN (Fuzzy K nearest neighbor). 展开更多
关键词 Fuzzy-Rough set edit nearest neighbour algorithm hand gesture recognition
下载PDF
Optical Fiber Application to the Object Recognition of Dexterous Hand
9
作者 ① XIE Xuqiang,WANG Shouyu,WANG Hongrui (Yanshan University,Qinhuangdao 066004,CHN) 《Semiconductor Photonics and Technology》 CAS 1996年第4期298-301,306,共5页
The dexterous hand is equiped with the flexible fiber as the optic sensor for recognition and identification of objects structured and non-structured environment.This simple and inexpensive method for object recogniti... The dexterous hand is equiped with the flexible fiber as the optic sensor for recognition and identification of objects structured and non-structured environment.This simple and inexpensive method for object recognition based on the optical fiber is presented in this paper. 展开更多
关键词 Fiber Optics Optical Fiber RECOGNITION ROBOT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部