For the complex questions of Chinese question answering system, we propose an answer extraction method with discourse structure feature combination. This method uses the relevance of questions and answers to learn to ...For the complex questions of Chinese question answering system, we propose an answer extraction method with discourse structure feature combination. This method uses the relevance of questions and answers to learn to rank the answers. Firstly, the method analyses questions to generate the query string, and then submits the query string to search engines to retrieve relevant documents. Sec- ondly, the method makes retrieved documents seg- mentation and identifies the most relevant candidate answers, in addition, it uses the rhetorical relations of rhetorical structure theory to analyze the relationship to determine the inherent relationship between para- graphs or sentences and generate the answer candi- date paragraphs or sentences. Thirdly, we construct the answer ranking model,, and extract five feature groups and adopt Ranking Support Vector Machine (SVM) algorithm to train ranking model. Finally, it re-ranks the answers with the training model and fred the optimal answers. Experiments show that the proposed method combined with discourse structure features can effectively improve the answer extrac- ting accuracy and the quality of non-factoid an- swers. The Mean Reciprocal Rank (MRR) of the an- swer extraction reaches 69.53%.展开更多
基金supported by the National Nature Science Foundation of China under Grants No.60863011,No.61175068,No.61100205,No.60873001the Fundamental Research Funds for the Central Universities under Grant No.2009RC0212+1 种基金the National Innovation Fund for Technology based Firms under Grant No.11C26215305905the Open Fund of Software Engineering Key Laboratory of Yunnan Province under Grant No.2011SE14
文摘For the complex questions of Chinese question answering system, we propose an answer extraction method with discourse structure feature combination. This method uses the relevance of questions and answers to learn to rank the answers. Firstly, the method analyses questions to generate the query string, and then submits the query string to search engines to retrieve relevant documents. Sec- ondly, the method makes retrieved documents seg- mentation and identifies the most relevant candidate answers, in addition, it uses the rhetorical relations of rhetorical structure theory to analyze the relationship to determine the inherent relationship between para- graphs or sentences and generate the answer candi- date paragraphs or sentences. Thirdly, we construct the answer ranking model,, and extract five feature groups and adopt Ranking Support Vector Machine (SVM) algorithm to train ranking model. Finally, it re-ranks the answers with the training model and fred the optimal answers. Experiments show that the proposed method combined with discourse structure features can effectively improve the answer extrac- ting accuracy and the quality of non-factoid an- swers. The Mean Reciprocal Rank (MRR) of the an- swer extraction reaches 69.53%.