Objective Natural language processing (NLP) was used to excavate and visualize the core content of syndrome element syndrome differentiation (SESD). Methods The first step was to build a text mining and analysis envir...Objective Natural language processing (NLP) was used to excavate and visualize the core content of syndrome element syndrome differentiation (SESD). Methods The first step was to build a text mining and analysis environment based on Python language, and built a corpus based on the core chapters of SESD. The second step was to digitalize the corpus. The main steps included word segmentation, information cleaning and merging, document-entry matrix, dictionary compilation and information conversion. The third step was to mine and display the internal information of SESD corpus by means of word cloud, keyword extraction and visualization. Results NLP played a positive role in computer recognition and comprehension of SESD. Different chapters had different keywords and weights. Deficiency syndrome elements were an important component of SESD, such as "Qi deficiency""Yang deficiency" and "Yin deficiency". The important syndrome elements of substantiality included "Blood stasis""Qi stagnation", etc. Core syndrome elements were closely related. Conclusions Syndrome differentiation and treatment was the core of SESD. Using NLP to excavate syndromes differentiation could help reveal the internal relationship between syndromes differentiation and provide basis for artificial intelligence to learn syndromes differentiation.展开更多
The Corona Virus Disease 2019(COVID-19) pandemic has taught us many valuable lessons regarding the importance of our physical and mental health. Even with so many technological advancements, we still lag in developing...The Corona Virus Disease 2019(COVID-19) pandemic has taught us many valuable lessons regarding the importance of our physical and mental health. Even with so many technological advancements, we still lag in developing a system that can fully digitalize the medical data of each individual and make it readily accessible for both the patient and health worker at any point in time. Moreover, there are also no ways for the government to identify the legitimacy of a particular clinic. This study merges modern technology with traditional approaches,thereby highlighting a scenario where artificial intelligence(AI) merges with traditional Chinese medicine(TCM), proposing a way to advance the conventional approaches. The main objective of our research is to provide a one-stop platform for the government, doctors,nurses, and patients to access their data effortlessly. The proposed portal will also check the doctors’ authenticity. Data is one of the most critical assets of an organization, so a breach of data can risk users’ lives. Data security is of primary importance and must be prioritized. The proposed methodology is based on cloud computing technology which assures the security of the data and avoids any kind of breach. The study also accounts for the difficulties encountered in creating such an infrastructure in the cloud and overcomes the hurdles faced during the project, keeping enough room for possible future innovations. To summarize, this study focuses on the digitalization of medical data and suggests some possible ways to achieve it. Moreover, it also focuses on some related aspects like security and potential digitalization difficulties.展开更多
基金the funding support from the National Natural Science Foundation of China (No. 81874429)Digital and Applied Research Platform for Diagnosis of Traditional Chinese Medicine (No. 49021003005)+1 种基金2018 Hunan Provincial Postgraduate Research Innovation Project (No. CX2018B465)Excellent Youth Project of Hunan Education Department in 2018 (No. 18B241)
文摘Objective Natural language processing (NLP) was used to excavate and visualize the core content of syndrome element syndrome differentiation (SESD). Methods The first step was to build a text mining and analysis environment based on Python language, and built a corpus based on the core chapters of SESD. The second step was to digitalize the corpus. The main steps included word segmentation, information cleaning and merging, document-entry matrix, dictionary compilation and information conversion. The third step was to mine and display the internal information of SESD corpus by means of word cloud, keyword extraction and visualization. Results NLP played a positive role in computer recognition and comprehension of SESD. Different chapters had different keywords and weights. Deficiency syndrome elements were an important component of SESD, such as "Qi deficiency""Yang deficiency" and "Yin deficiency". The important syndrome elements of substantiality included "Blood stasis""Qi stagnation", etc. Core syndrome elements were closely related. Conclusions Syndrome differentiation and treatment was the core of SESD. Using NLP to excavate syndromes differentiation could help reveal the internal relationship between syndromes differentiation and provide basis for artificial intelligence to learn syndromes differentiation.
文摘The Corona Virus Disease 2019(COVID-19) pandemic has taught us many valuable lessons regarding the importance of our physical and mental health. Even with so many technological advancements, we still lag in developing a system that can fully digitalize the medical data of each individual and make it readily accessible for both the patient and health worker at any point in time. Moreover, there are also no ways for the government to identify the legitimacy of a particular clinic. This study merges modern technology with traditional approaches,thereby highlighting a scenario where artificial intelligence(AI) merges with traditional Chinese medicine(TCM), proposing a way to advance the conventional approaches. The main objective of our research is to provide a one-stop platform for the government, doctors,nurses, and patients to access their data effortlessly. The proposed portal will also check the doctors’ authenticity. Data is one of the most critical assets of an organization, so a breach of data can risk users’ lives. Data security is of primary importance and must be prioritized. The proposed methodology is based on cloud computing technology which assures the security of the data and avoids any kind of breach. The study also accounts for the difficulties encountered in creating such an infrastructure in the cloud and overcomes the hurdles faced during the project, keeping enough room for possible future innovations. To summarize, this study focuses on the digitalization of medical data and suggests some possible ways to achieve it. Moreover, it also focuses on some related aspects like security and potential digitalization difficulties.