期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
事故原因分析与工业产品中的人机学设计 被引量:1
1
作者 薛艳敏 李晓玲 郭磊 《人类工效学》 2005年第1期42-44,共3页
从工业设计和人机工程学的角度对引发事故的人、物、管理等因素进行了分析,指出物的设计不合理是事故发生的基本因素,"以机器为本"的设计思想应转向"以人为本",以此为基础将人机学理论运用到各个环节进行工业产品... 从工业设计和人机工程学的角度对引发事故的人、物、管理等因素进行了分析,指出物的设计不合理是事故发生的基本因素,"以机器为本"的设计思想应转向"以人为本",以此为基础将人机学理论运用到各个环节进行工业产品设计从而有效控制事故。 展开更多
关键词 以机器为本 以人为本 产品设计 人机学理论 事故
下载PDF
北京矿务局11年井下矿工伤亡案例分析
2
作者 张家志 张红 《煤矿安全》 CAS 北大核心 1994年第11期27-30,共4页
本文对北京矿务局1981年~1991年间的伤亡情况进行了全面的纵横分析,基本摸清了伤亡的实际情况和原因。
关键词 伤亡案例 人机学理论 安全系统工程 矿工 煤矿
下载PDF
Artificial intelligence in drug design 被引量:14
3
作者 Feisheng Zhong Jing Xing +13 位作者 Xutong Li Xiaohong Liu Zunyun Fu Zhaoping Xiong Dong Lu Xiaolong Wu Jihui Zhao Xiaoqin Tan Fei Li Xiaomin Luo Zhaojun Li Kaixian Chen Mingyue Zheng Hualiang Jiang 《Science China(Life Sciences)》 SCIE CAS CSCD 2018年第10期1191-1204,共14页
Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage... Thanks to the fast improvement of the computing power and the rapid development of the computational chemistry and biology,the computer-aided drug design techniques have been successfully applied in almost every stage of the drug discovery and development pipeline to speed up the process of research and reduce the cost and risk related to preclinical and clinical trials.Owing to the development of machine learning theory and the accumulation of pharmacological data, the artificial intelligence(AI) technology, as a powerful data mining tool, has cut a figure in various fields of the drug design, such as virtual screening,activity scoring, quantitative structure-activity relationship(QSAR) analysis, de novo drug design, and in silico evaluation of absorption, distribution, metabolism, excretion and toxicity(ADME/T) properties. Although it is still challenging to provide a physical explanation of the AI-based models, it indeed has been acting as a great power to help manipulating the drug discovery through the versatile frameworks. Recently, due to the strong generalization ability and powerful feature extraction capability,deep learning methods have been employed in predicting the molecular properties as well as generating the desired molecules,which will further promote the application of AI technologies in the field of drug design. 展开更多
关键词 drug design artificial intelligence deep learning QSAR ADME/T
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部