High-Voltage Live Cleaning Robot works in a hot-line environment (220 kV/330 kV), and so the safety of its application and equipment is most important. In terms of safety, the designs of robot mechanism and control sy...High-Voltage Live Cleaning Robot works in a hot-line environment (220 kV/330 kV), and so the safety of its application and equipment is most important. In terms of safety, the designs of robot mechanism and control system have been discussed, and the test data are given regarding the control system of a model machine. The model machine of a high-voltage live cleaning robot can satisfy the needs of basic cleaning in common conditions. From manual operation to automation, the cleaning efficiency is improved. The robot can decrease the amount of work, and guarantee security. Among high-voltage live cleaning equipment in China, the cleaning robot is advanced in automation and intelligence.展开更多
Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phospho...Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phosphorus mines encounters great challenges. For this purpose, a man-machine-environment system composed of evaluation indexes was established, and the grading standards of indexes were defined. Firstly, the measurements of 39 qualitative indexes were obtained through the survey data. According to the measured values of 31 quantitative indexes, the measurements of quantitative indexes were calculated by linear measurement function(LM) and other three functions. Then the singleindex measurement evaluation matrixes were established. Secondly, the entropy weight method was used to determine the weights of each index directly. The analytic hierarchy process(AHP) was also applied to calculate the weights of index and index factor hierarchies after the established hierarchical model. The weights of system hierarchies were given by the grid-based fuzzy Borda method(GFB). The comprehensive weights were determined by the combination method of AHP and GFB(CAG). Furthermore, the multi-index comprehensive measurement evaluation vectors were obtained.Thirdly, the vectors were evaluated by the credible degree recognition(CDR) and the maximum membership(TMM)criteria. Based on the above functions, methods, and criteria, 16 combination evaluation methods were recommended.Finally, the clean and safe production grade of Kaiyang phosphate mine in China was evaluated. The results show that the LM-CAG-CDR is the most reasonable method, which can not only determine the clean and safe production grade of phosphorus mines, but also improve the development level of clean and safe mining of phosphorus mines for guidance.In addition, some beneficial suggestions and measures were also proposed to advance the clean and safe production grade of Kaiyang phosphorus mine.展开更多
Safety subsystem is one of the important parts in robot teleoperation system. In this paper, a safety architecture of safety subsystem in Internet based multi-operator-multi-robot (MOMR) teleoperation system is presen...Safety subsystem is one of the important parts in robot teleoperation system. In this paper, a safety architecture of safety subsystem in Internet based multi-operator-multi-robot (MOMR) teleoperation system is presented. The subsystem is divided into three layers in its logic architecture: interactive monitor layer, collaborative control layer and real-time control layer. The safety problems and the related strategy are clarified by detailed analysis of each layer and relationship among the layers. So we can obtain a high performance MOMR teleoperation system with multi-layer safety architecture.展开更多
In the near future, active safety systems will take more control over the vehicle driving, even up to introducing fully autonomous vehicles. Nowadays, it is expected that the active safety systems will aid avoiding co...In the near future, active safety systems will take more control over the vehicle driving, even up to introducing fully autonomous vehicles. Nowadays, it is expected that the active safety systems will aid avoiding collisions much more efficiently than human drivers. These systems can protect not only the passengers, but also other road users. To mitigate collision, certain maneuvers (e.g., sudden braking, lane change, etc.) need to be done in a reasonably quick time. However, this may lead to low-g energy pulses. The latter fact, may cause unexpected and, in some cases, unwanted occupant body motion resulting even in OOP (out of position) postures. New patterns of occupant reactions in such cases are, to some extent, confirmed experimentally [1-3]. This paper evaluates the limits of standard ATDs (anthropometric test devices) and chosen human models in well established maneuver scenarios. Obtained results are compared with experimental data available in the literature. Drawbacks identify new challenges for the near future simulation based safety engineering. One scenario with combined conditions of emergency braking during lane change has been used as an example of OOP posture after maneuver.展开更多
The paper presents a model of a redundant robot configuration with a built-in safety. By the method of strong continuous semi-group, the paper analyzes the essential spectrum of the system operator before and after pe...The paper presents a model of a redundant robot configuration with a built-in safety. By the method of strong continuous semi-group, the paper analyzes the essential spectrum of the system operator before and after perturbation. The results show that in s special condition, the dynamic solution of the system is exponential stability and tends to the steady solution of the system.展开更多
This paper presents the analysis of exponential stability of a system consisting of a robot and its associated safety mechanism. The system have various modes of failures and is repairable. The paper investigates the ...This paper presents the analysis of exponential stability of a system consisting of a robot and its associated safety mechanism. The system have various modes of failures and is repairable. The paper investigates the nonnegative stead-state solution of system,the existence of strictly dominant eigenvalue and restriction of essential spectrum growth bound of the system operator. The essential spectral radius of the system operator is also discussed before and after perturbation. The results show that the dynamic solution of the system is exponential stab'flity and converges to the steady-state solution.展开更多
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2002AA420110 -2).
文摘High-Voltage Live Cleaning Robot works in a hot-line environment (220 kV/330 kV), and so the safety of its application and equipment is most important. In terms of safety, the designs of robot mechanism and control system have been discussed, and the test data are given regarding the control system of a model machine. The model machine of a high-voltage live cleaning robot can satisfy the needs of basic cleaning in common conditions. From manual operation to automation, the cleaning efficiency is improved. The robot can decrease the amount of work, and guarantee security. Among high-voltage live cleaning equipment in China, the cleaning robot is advanced in automation and intelligence.
基金Project(51974362) supported by the National Natural Science Foundation of ChinaProject(2282020cxqd055) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2021-QYC-10050-25631) supported by the Department of Emergency Management of Hunan Province,China。
文摘Phosphorus is an essential element in agricultural production and chemical industry. However, since the risk of casualties and economic loss by mining accidents, the application of clean and safe production in phosphorus mines encounters great challenges. For this purpose, a man-machine-environment system composed of evaluation indexes was established, and the grading standards of indexes were defined. Firstly, the measurements of 39 qualitative indexes were obtained through the survey data. According to the measured values of 31 quantitative indexes, the measurements of quantitative indexes were calculated by linear measurement function(LM) and other three functions. Then the singleindex measurement evaluation matrixes were established. Secondly, the entropy weight method was used to determine the weights of each index directly. The analytic hierarchy process(AHP) was also applied to calculate the weights of index and index factor hierarchies after the established hierarchical model. The weights of system hierarchies were given by the grid-based fuzzy Borda method(GFB). The comprehensive weights were determined by the combination method of AHP and GFB(CAG). Furthermore, the multi-index comprehensive measurement evaluation vectors were obtained.Thirdly, the vectors were evaluated by the credible degree recognition(CDR) and the maximum membership(TMM)criteria. Based on the above functions, methods, and criteria, 16 combination evaluation methods were recommended.Finally, the clean and safe production grade of Kaiyang phosphate mine in China was evaluated. The results show that the LM-CAG-CDR is the most reasonable method, which can not only determine the clean and safe production grade of phosphorus mines, but also improve the development level of clean and safe mining of phosphorus mines for guidance.In addition, some beneficial suggestions and measures were also proposed to advance the clean and safe production grade of Kaiyang phosphorus mine.
文摘Safety subsystem is one of the important parts in robot teleoperation system. In this paper, a safety architecture of safety subsystem in Internet based multi-operator-multi-robot (MOMR) teleoperation system is presented. The subsystem is divided into three layers in its logic architecture: interactive monitor layer, collaborative control layer and real-time control layer. The safety problems and the related strategy are clarified by detailed analysis of each layer and relationship among the layers. So we can obtain a high performance MOMR teleoperation system with multi-layer safety architecture.
文摘In the near future, active safety systems will take more control over the vehicle driving, even up to introducing fully autonomous vehicles. Nowadays, it is expected that the active safety systems will aid avoiding collisions much more efficiently than human drivers. These systems can protect not only the passengers, but also other road users. To mitigate collision, certain maneuvers (e.g., sudden braking, lane change, etc.) need to be done in a reasonably quick time. However, this may lead to low-g energy pulses. The latter fact, may cause unexpected and, in some cases, unwanted occupant body motion resulting even in OOP (out of position) postures. New patterns of occupant reactions in such cases are, to some extent, confirmed experimentally [1-3]. This paper evaluates the limits of standard ATDs (anthropometric test devices) and chosen human models in well established maneuver scenarios. Obtained results are compared with experimental data available in the literature. Drawbacks identify new challenges for the near future simulation based safety engineering. One scenario with combined conditions of emergency braking during lane change has been used as an example of OOP posture after maneuver.
文摘The paper presents a model of a redundant robot configuration with a built-in safety. By the method of strong continuous semi-group, the paper analyzes the essential spectrum of the system operator before and after perturbation. The results show that in s special condition, the dynamic solution of the system is exponential stability and tends to the steady solution of the system.
文摘This paper presents the analysis of exponential stability of a system consisting of a robot and its associated safety mechanism. The system have various modes of failures and is repairable. The paper investigates the nonnegative stead-state solution of system,the existence of strictly dominant eigenvalue and restriction of essential spectrum growth bound of the system operator. The essential spectral radius of the system operator is also discussed before and after perturbation. The results show that the dynamic solution of the system is exponential stab'flity and converges to the steady-state solution.