Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platfor...Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platform,and three revolute joint-revolute joint-column pair chains which connect the moving platform and the base platform.Firstly,kinematics analysis for 3-RRC parallel manipulator was conducted.Next,on the basis of Lagrange formula,a simply-structured dynamic model of 3-RRC parallel manipulator was derived.Finally,through a calculation example,the variation of motorial parameters of this 3-RRC parallel manipulator,equivalent moment of inertia,driving force/torque and energy consumption was discussed.The research findings have important significance for research and engineering projects such as analyzing dynamic features,mechanism optimization design and control of 3-RRC parallel manipulator.展开更多
The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elem...The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Secondly, according to the kinematic coupling relationship between the moving platform and flexible links, the kinematic constraints of the flexible parallel manipulator were proposed. Thirdly, using the kinematic constraint equations and dynamic model of the moving platform, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. FtLrthermore, a few commonly used effective solutions of second-order differential equation system with variable coefficients were discussed. Newmark numerical method was used to solve the dynamic equations of the flexible parallel manipulator. Finally, the dynamic responses of the moving platform and driving torques of the 3-RRS parallel mechanism with flexible links were analyzed through numerical simulation. The results provide important information for analysis of dynamic performance, dynamics optimization design, dynamic simulation and control of the 3-RRS flexible parallel manipulator.展开更多
A special form of the Stewart platform is presented in which the top platform and base platform are similar and corresponding vertices are connected by six prismatic joints.A closed-from solution for the forward displ...A special form of the Stewart platform is presented in which the top platform and base platform are similar and corresponding vertices are connected by six prismatic joints.A closed-from solution for the forward displacement analysis of this mechanism is developed.When the six vertices of the top platform are in a quadratic curve,this mechanism becomes singular.This new theoretical result is confirmed with a numerical example.展开更多
A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state...A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state feed forward control algorithm in the tendon length coordinate was used. Considering the system redundancy and actuation behavior, algorithms of optimal tension distribution and forward kinematics were designed. Then, the simulation experiments of motion control were implemented. The results demonstrate that the proposed TBPM translation system performs robust capacities. It can transfer the loads 1 m away within 1.5 s. With further optimization, the translation duration can be further reduced to be about 1 s and the optimized translation is followed with 43.59 m/s2 maximum acceleration. The translation errors at the aim position remain below 0.4 mm.展开更多
Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to con...Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to confirm Jacobian matrix reflecting relations of all joints,nodes,and generalized coordinates,namely,relations of second-order and corresponding third-order conversion tensors. For complex motion relations of components in a parallel robot,it gives second-order and third-order conversion tensors of dynamic equations for the 6-HTRT parallel robot based on equivalent integrated finite element method. The method is suitable for the typical robots whose positions of work space and sizes of mechanism are different. The solving course of the method is simple and convenient,so the method lays the foundation of dynamic analysis for robots.展开更多
In this study, we aim at obtaining inverse kinematic model of a serial manipulator using spatial operator algebra. For testing the inverse kinematic algorithm, the Vpython software program which has simultaneous view ...In this study, we aim at obtaining inverse kinematic model of a serial manipulator using spatial operator algebra. For testing the inverse kinematic algorithm, the Vpython software program which has simultaneous view and software working, is used. The aim is to measure the inverse kinematics modeling work on different serial manipulator mechanisms with spatial vector algebra. The algorithm is used with the same reference inputs on the recursive, exact and nonrecursive manipulators. During the tests, the permitted error tolerance is 0.01 cm. The graph plots show that the algorithm is fit for the error tolerance.展开更多
基金Project(2014QNB18) supported by the Fundamental Research Funds for the Central Universities of ChinaProject(2014CBO46300) supported by the National Basic Research Program of China
文摘Kinematics and dynamics analyses were performed for a spatial 3-revolute joint-revolute joint-clylindric pair(3-RRC) parallel manipulator.This 3-RRC parallel manipulator is composed of a moving platform,a base platform,and three revolute joint-revolute joint-column pair chains which connect the moving platform and the base platform.Firstly,kinematics analysis for 3-RRC parallel manipulator was conducted.Next,on the basis of Lagrange formula,a simply-structured dynamic model of 3-RRC parallel manipulator was derived.Finally,through a calculation example,the variation of motorial parameters of this 3-RRC parallel manipulator,equivalent moment of inertia,driving force/torque and energy consumption was discussed.The research findings have important significance for research and engineering projects such as analyzing dynamic features,mechanism optimization design and control of 3-RRC parallel manipulator.
基金Projects(50875002, 60705036) supported by the National Natural Science Foundation of ChinaProject(3062004) supported by Beijing Natural Science Foundation, China+1 种基金Project(20070104) supported by the Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of SciencesProject(2009AA04Z415) supported by the National High-Tech Research and Development Program of China
文摘The dynamic modeling and solution of the 3-RRS spatial parallel manipulators with flexible links were investigated. Firstly, a new model of spatial flexible beam element was proposed, and the dynamic equations of elements and branches of the parallel manipulator were derived. Secondly, according to the kinematic coupling relationship between the moving platform and flexible links, the kinematic constraints of the flexible parallel manipulator were proposed. Thirdly, using the kinematic constraint equations and dynamic model of the moving platform, the overall system dynamic equations of the parallel manipulator were obtained by assembling the dynamic equations of branches. FtLrthermore, a few commonly used effective solutions of second-order differential equation system with variable coefficients were discussed. Newmark numerical method was used to solve the dynamic equations of the flexible parallel manipulator. Finally, the dynamic responses of the moving platform and driving torques of the 3-RRS parallel mechanism with flexible links were analyzed through numerical simulation. The results provide important information for analysis of dynamic performance, dynamics optimization design, dynamic simulation and control of the 3-RRS flexible parallel manipulator.
文摘A special form of the Stewart platform is presented in which the top platform and base platform are similar and corresponding vertices are connected by six prismatic joints.A closed-from solution for the forward displacement analysis of this mechanism is developed.When the six vertices of the top platform are in a quadratic curve,this mechanism becomes singular.This new theoretical result is confirmed with a numerical example.
基金Project(B07028) supported by "111" Introducing Talents of Discipline to University Program through Ministry of Education of China
文摘A novel sorting system based on one degree of freedom (DOF) tendon based parallel manipulator (TBPM) for high value waste processing was presented and designed. In order to control the motion of loads, nonlinear state feed forward control algorithm in the tendon length coordinate was used. Considering the system redundancy and actuation behavior, algorithms of optimal tension distribution and forward kinematics were designed. Then, the simulation experiments of motion control were implemented. The results demonstrate that the proposed TBPM translation system performs robust capacities. It can transfer the loads 1 m away within 1.5 s. With further optimization, the translation duration can be further reduced to be about 1 s and the optimized translation is followed with 43.59 m/s2 maximum acceleration. The translation errors at the aim position remain below 0.4 mm.
基金Innovation Fund of Harbin,China (No.2006RFQXG036)
文摘Equivalent integrated finite element method is a canonical and efficient modeling method in dynamic analysis of complex mechanism. The key of establishing dynamic equations of spatial mechanism by the method is to confirm Jacobian matrix reflecting relations of all joints,nodes,and generalized coordinates,namely,relations of second-order and corresponding third-order conversion tensors. For complex motion relations of components in a parallel robot,it gives second-order and third-order conversion tensors of dynamic equations for the 6-HTRT parallel robot based on equivalent integrated finite element method. The method is suitable for the typical robots whose positions of work space and sizes of mechanism are different. The solving course of the method is simple and convenient,so the method lays the foundation of dynamic analysis for robots.
文摘In this study, we aim at obtaining inverse kinematic model of a serial manipulator using spatial operator algebra. For testing the inverse kinematic algorithm, the Vpython software program which has simultaneous view and software working, is used. The aim is to measure the inverse kinematics modeling work on different serial manipulator mechanisms with spatial vector algebra. The algorithm is used with the same reference inputs on the recursive, exact and nonrecursive manipulators. During the tests, the permitted error tolerance is 0.01 cm. The graph plots show that the algorithm is fit for the error tolerance.