Majorana fermion (MF), an exotic particle that is identical to its own antiparticle, was recently found in solid matter as a quasiparticle excitation, the Majorana zero mode (MZM), in the vortex of an artificial t...Majorana fermion (MF), an exotic particle that is identical to its own antiparticle, was recently found in solid matter as a quasiparticle excitation, the Majorana zero mode (MZM), in the vortex of an artificial topological superconductor (TSC). This artificial TSC, first proposed by Fu and Kane in 2008, is a heterostructure made of a topological insulator BiETe3 and an s-wave superconductor NbSe2. This paper will briefly review the experimental progresses based on the Bi2Te3/NbSe2 heterostructure. All evidences are self-consistent and reveal that the MZM exists in the center of vortex. Those experimental results are also supported by theory. This finding is a milestone in the research ofMajorana fermions in solid state physics and a starting point of MZM's application in topological quantum computation.展开更多
We firstly described a simulation model to investigate the influence of grain boundary(GB)on the vortex transport properties in YBCO film.It is found that the size of inhomogeneous area caused by GB as well as the ave...We firstly described a simulation model to investigate the influence of grain boundary(GB)on the vortex transport properties in YBCO film.It is found that the size of inhomogeneous area caused by GB as well as the average velocity in transverse and longitudinal directions shows an angular dependence when the angle between the GB and the sample edge varies.We have also studied the impact of magnetic field intensity on dynamic behavior of vortex lattice and found that a lower vortex density makes it difficult for the vortex lattice to transfer from pinning state to flow state.As the magnetic field is decreased beyond a critical value,sharp jumps and strong fluctuations were observed in the I-V curve.Finally,we conducted measurements on a thin film YBa2Cu3O7 with an individual artificial grain boundary to support the simulation process.展开更多
A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The pa...A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.展开更多
文摘Majorana fermion (MF), an exotic particle that is identical to its own antiparticle, was recently found in solid matter as a quasiparticle excitation, the Majorana zero mode (MZM), in the vortex of an artificial topological superconductor (TSC). This artificial TSC, first proposed by Fu and Kane in 2008, is a heterostructure made of a topological insulator BiETe3 and an s-wave superconductor NbSe2. This paper will briefly review the experimental progresses based on the Bi2Te3/NbSe2 heterostructure. All evidences are self-consistent and reveal that the MZM exists in the center of vortex. Those experimental results are also supported by theory. This finding is a milestone in the research ofMajorana fermions in solid state physics and a starting point of MZM's application in topological quantum computation.
基金supported by the National Basic Research Program of China("973"Project)(Grant Nos.2011CBA00107 and 2014CB339804)the National Natural Science Foundation of China(Grant Nos.61371036,11234006 and 11227904)+1 种基金the Natural Science Foundation of Jiangsu(Grant No.BK2012013)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘We firstly described a simulation model to investigate the influence of grain boundary(GB)on the vortex transport properties in YBCO film.It is found that the size of inhomogeneous area caused by GB as well as the average velocity in transverse and longitudinal directions shows an angular dependence when the angle between the GB and the sample edge varies.We have also studied the impact of magnetic field intensity on dynamic behavior of vortex lattice and found that a lower vortex density makes it difficult for the vortex lattice to transfer from pinning state to flow state.As the magnetic field is decreased beyond a critical value,sharp jumps and strong fluctuations were observed in the I-V curve.Finally,we conducted measurements on a thin film YBa2Cu3O7 with an individual artificial grain boundary to support the simulation process.
文摘A grating eddy current displacement sensor(GECDS) can be used in a watertight electronic transducer to realize long range displacement or position measurement with high accuracy in difficult industry conditions.The parameters optimization of the sensor is essential for economic and efficient production.This paper proposes a method to combine an artificial neural network(ANN) and a genetic algorithm(GA) for the sensor parameters optimization.A neural network model is developed to map the complex relationship between design parameters and the nonlinearity error of the GECDS,and then a GA is used in the optimization process to determine the design parameter values,resulting in a desired minimal nonlinearity error of about 0.11%.The calculated nonlinearity error is 0.25%.These results show that the proposed method performs well for the parameters optimization of the GECDS.