Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experime...Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experiments using regional climate model RegCM4. In the first experiment used to study the climatic responses to human carbon emissions, the model were configured over entire China because the impacts of carbon emissions can be detected across the whole country. Results from the first experiment revealed that near-surface air temperature may significantly increase from 2007 to 2059 at a rate exceeding 0.1 ~C per decade in most areas across the country; southwestern and southeastern China also showed increasing trends in summer precipitation, with rates exceeding 10 mm per decade over the same period. In summer, only northern China showed an increasing trend of evapotranspiration, with increase rates ranging from 1 to 5 mm per decade; in winter, increase rates ranging from 1 to 5 mm per decade were observed in most regions. These effects are believed to be caused by global warming from human carbon emissions. In the second experiment used to study the effects of human water use, the model were configured over a limited region-- Haihe River Basin in the northern China, because compared with the human carbon emissions, the effects of human water use are much more local and regional, and the Haihe River Basin is the most typical region in China that suffers from both intensive human groundwater exploitation and surface water diversion. We incorporated a scheme of human water regulation into RegCM4 and conducted the second experiment. Model outputs showed that the groundwater table severely declined by -10 m in 1971-2000 through human groundwater over- exploitation in the basin; in fact, current conditions are so extreme that even reducing the pumping rate by half cannot eliminate the ground- water depletion cones observed in the area. Other hydrological and climatic elements, such as soil moisture, runoff generation, air humidity, precipitation, wind field, and soil and air temperature, were also significantly affected by anthropogenic water withdrawal and consumption, although these effects could be mitigated by reducing the amount of water drawn for extraction and application.展开更多
In recent decades, there have been a number of debates on climate warming and its driving forces. Based on an extensive literature review, we suggest that (1) climate warming occurs with great uncertainty in the mag...In recent decades, there have been a number of debates on climate warming and its driving forces. Based on an extensive literature review, we suggest that (1) climate warming occurs with great uncertainty in the magnitude of the temperature increase; (2) both human activities and natural forces contribute to climate change, but their relative contributions are difficult to quan- tify; and (3) the dominant role of the increase in the atmospheric concentration of greenhouse gases (including CO2) in the global warming claimed by the Intergovernrnental Panel on Climate Change (IPCC) is questioned by the scientific communities because of large uncertainties in the mechanisms of natural factors and anthropogenic activities and in the sources of the increased atmospheric CO2 concentration. More efforts should be made in order to clarify these uncertainties.展开更多
Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction ...Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction between the coupled earth system models and the IAMs. This paper introduces a new method to design possible future emission scenarios and corresponding climate change, in which a simple economic and climate damage component is added to the coupled earth system model of Beijing Normal University (BNU-ESM). With the growth of population and technological expertise and the declining emission-to-output ratio described in the Dynamic Inte- grated Climate-Economy model, the projected carbon emission is 13.7 Gt C, resulting in a 2.4℃ warming by the end of the twenty-first century (2080-2099) compared with 1980-1999. This paper also suggests the importance of the land and ocean carbon cycle in determining the CO2 con- centration in the atmosphere. It is hoped that in the near future the next generation of coupled earth system models that include both the natural system and the social dimension will be developed.展开更多
文摘Carbon emissions and water use are two major kinds of human activities. To reveal whether these two activities can modify the hydrological cycle and climate system in China, we conducted two sets of numerical experiments using regional climate model RegCM4. In the first experiment used to study the climatic responses to human carbon emissions, the model were configured over entire China because the impacts of carbon emissions can be detected across the whole country. Results from the first experiment revealed that near-surface air temperature may significantly increase from 2007 to 2059 at a rate exceeding 0.1 ~C per decade in most areas across the country; southwestern and southeastern China also showed increasing trends in summer precipitation, with rates exceeding 10 mm per decade over the same period. In summer, only northern China showed an increasing trend of evapotranspiration, with increase rates ranging from 1 to 5 mm per decade; in winter, increase rates ranging from 1 to 5 mm per decade were observed in most regions. These effects are believed to be caused by global warming from human carbon emissions. In the second experiment used to study the effects of human water use, the model were configured over a limited region-- Haihe River Basin in the northern China, because compared with the human carbon emissions, the effects of human water use are much more local and regional, and the Haihe River Basin is the most typical region in China that suffers from both intensive human groundwater exploitation and surface water diversion. We incorporated a scheme of human water regulation into RegCM4 and conducted the second experiment. Model outputs showed that the groundwater table severely declined by -10 m in 1971-2000 through human groundwater over- exploitation in the basin; in fact, current conditions are so extreme that even reducing the pumping rate by half cannot eliminate the ground- water depletion cones observed in the area. Other hydrological and climatic elements, such as soil moisture, runoff generation, air humidity, precipitation, wind field, and soil and air temperature, were also significantly affected by anthropogenic water withdrawal and consumption, although these effects could be mitigated by reducing the amount of water drawn for extraction and application.
基金supported by the Academic Division of the Chinese Academy of Sciencesthe National Natural Science Foundation of China (Grant No. 31021001)the National Basic Research Program of China (Grant No. 2010CB950600)
文摘In recent decades, there have been a number of debates on climate warming and its driving forces. Based on an extensive literature review, we suggest that (1) climate warming occurs with great uncertainty in the magnitude of the temperature increase; (2) both human activities and natural forces contribute to climate change, but their relative contributions are difficult to quan- tify; and (3) the dominant role of the increase in the atmospheric concentration of greenhouse gases (including CO2) in the global warming claimed by the Intergovernrnental Panel on Climate Change (IPCC) is questioned by the scientific communities because of large uncertainties in the mechanisms of natural factors and anthropogenic activities and in the sources of the increased atmospheric CO2 concentration. More efforts should be made in order to clarify these uncertainties.
基金supported by the National Natural Science Foundation of China (41605036 and 41305053)the National Key Research and Development Program of China (2016YFA0602703)+1 种基金the National-Level Major Cultivation Project of Guangdong Province (2014GKXM058)the Open Project of the State Key Laboratory of Cryospheric Science (SKLCS-OP-2016-09)
文摘Future climate change is usually projected by coupled earth system models under specific emission sce- narios designed by integrated assessment models (IAMs), and this offline approach means there is no interaction between the coupled earth system models and the IAMs. This paper introduces a new method to design possible future emission scenarios and corresponding climate change, in which a simple economic and climate damage component is added to the coupled earth system model of Beijing Normal University (BNU-ESM). With the growth of population and technological expertise and the declining emission-to-output ratio described in the Dynamic Inte- grated Climate-Economy model, the projected carbon emission is 13.7 Gt C, resulting in a 2.4℃ warming by the end of the twenty-first century (2080-2099) compared with 1980-1999. This paper also suggests the importance of the land and ocean carbon cycle in determining the CO2 con- centration in the atmosphere. It is hoped that in the near future the next generation of coupled earth system models that include both the natural system and the social dimension will be developed.