为了提高人脸姿态识别的识别精度,设计了一种增强边缘梯度二值卷积神经网络用于识别.首先,提出ROILBC(Region of Interest Local Binary Convolution)在人脸姿态图像上提取二值特征并归类,根据二值特征图谱和原像的对比情况选择人脸姿...为了提高人脸姿态识别的识别精度,设计了一种增强边缘梯度二值卷积神经网络用于识别.首先,提出ROILBC(Region of Interest Local Binary Convolution)在人脸姿态图像上提取二值特征并归类,根据二值特征图谱和原像的对比情况选择人脸姿态图像ROI(Region of Interest)以供后续网络学习.其次,提出DR-MGPC(Dimensionality Reduced Modified Gradient Pattern Convolution)提取图像边缘梯度二值特征,在此基础上,提出Enhanced DR-LDPC(Enhanced Dimensionality Reduced Local Directional Pattern Convolution)提取图像增强边缘梯度方向特征.网络采用直方图相似度、卡方检验、常态分布比对的巴氏距离法作为测量依据来进行识别;实验在FERET和CAS-PEAL-R1数据集上进行,相比其他人脸姿态识别方法,提出的二值模式卷积神经网络在识别精度和计算效率上更优异.展开更多
目的人脸识别已经得到了广泛应用,但大姿态人脸识别问题仍未完美解决。已有方法或提取姿态鲁棒特征,或进行人脸姿态的正面化。其中主流的人脸正面化方法包括2D回归生成和3D模型形变建模,前者能够生成相对自然真实的人脸,但会引入额外的...目的人脸识别已经得到了广泛应用,但大姿态人脸识别问题仍未完美解决。已有方法或提取姿态鲁棒特征,或进行人脸姿态的正面化。其中主流的人脸正面化方法包括2D回归生成和3D模型形变建模,前者能够生成相对自然真实的人脸,但会引入额外的噪声导致图像信息的扭曲;后者能够保持原始的人脸结构信息,但生成过程是基于物理模型的,不够自然灵活。为此,结合2D和3D方法的优势,本文提出了基于由粗到细形变场的人脸正面化方法。方法该形变场由深度网络以2D回归方式学得,反映的是不同视角人脸图像像素之间的语义级对应关系,可以类3D的方式实现非正面人脸图像的正面化,因此该方法兼具了2D正面化方法的灵活性与3D正面化方法的保真性,且借鉴分步渐进的思路,本文提出了由粗到细的形变场学习框架,以获得更加准确鲁棒的形变场。结果本文采用大姿态人脸识别实验来验证本文方法的有效性,在MultiPIE(multi pose,illumination,expressions)、LFW(labeled faces in the wild)、CFP(celebrities in frontal-profile in the wild)、IJB-A(intelligence advanced research projects activity Janus benchmark-A)等4个数据集上均取得了比已有方法更高的人脸识别精度。结论本文提出的基于由粗到细的形变场学习的人脸正面化方法,综合了2D和3D人脸正面化方法的优点,使人脸正面化结果的学习更加灵活、准确,保持了更多有利于识别的身份信息。展开更多
目的人脸姿态偏转是影响人脸识别准确率的一个重要因素,本文利用3维人脸重建中常用的3维形变模型以及深度卷积神经网络,提出一种用于多姿态人脸识别的人脸姿态矫正算法,在一定程度上提高了大姿态下人脸识别的准确率。方法对传统的3维形...目的人脸姿态偏转是影响人脸识别准确率的一个重要因素,本文利用3维人脸重建中常用的3维形变模型以及深度卷积神经网络,提出一种用于多姿态人脸识别的人脸姿态矫正算法,在一定程度上提高了大姿态下人脸识别的准确率。方法对传统的3维形变模型拟合方法进行改进,利用人脸形状参数和表情参数对3维形变模型进行建模,针对面部不同区域的关键点赋予不同的权值,加权拟合3维形变模型,使得具有不同姿态和面部表情的人脸图像拟合效果更好。然后,对3维人脸模型进行姿态矫正并利用深度学习对人脸图像进行修复,修复不规则的人脸空洞区域,并使用最新的局部卷积技术同时在新的数据集上重新训练卷积神经网络,使得网络参数达到最优。结果在LFW(labeled faces in the wild)人脸数据库和Stirling ESRC(Economic Social Research Council)3维人脸数据库上,将本文算法与其他方法进行比较,实验结果表明,本文算法的人脸识别精度有一定程度的提高。在LFW数据库上,通过对具有任意姿态的人脸图像进行姿态矫正和修复后,本文方法达到了96.57%的人脸识别精确度。在Stirling ESRC数据库上,本文方法在人脸姿态为±22°的情况下,人脸识别准确率分别提高5.195%和2.265%;在人脸姿态为±45°情况下,人脸识别准确率分别提高5.875%和11.095%;平均人脸识别率分别提高5.53%和7.13%。对比实验结果表明,本文提出的人脸姿态矫正算法有效提高了人脸识别的准确率。结论本文提出的人脸姿态矫正算法,综合了3维形变模型和深度学习模型的优点,在各个人脸姿态角度下,均能使人脸识别准确率在一定程度上有所提高。展开更多
A robust face pose estimation approach is proposed by using face shape statistical model approach and pose parameters are represented by trigonometric functions. The face shape statistical model is firstly built by an...A robust face pose estimation approach is proposed by using face shape statistical model approach and pose parameters are represented by trigonometric functions. The face shape statistical model is firstly built by analyzing the face shapes from different people under varying poses. The shape alignment is vital in the process of building the statistical model. Then, six trigonometric functions are employed to represent the face pose parameters. Lastly, the mapping function is constructed between face image and face pose by linearly relating different parameters. The proposed approach is able to estimate different face poses using a few face training samples. Experimental results are provided to demonstrate its efficiency and accuracy.展开更多
文摘为了提高人脸姿态识别的识别精度,设计了一种增强边缘梯度二值卷积神经网络用于识别.首先,提出ROILBC(Region of Interest Local Binary Convolution)在人脸姿态图像上提取二值特征并归类,根据二值特征图谱和原像的对比情况选择人脸姿态图像ROI(Region of Interest)以供后续网络学习.其次,提出DR-MGPC(Dimensionality Reduced Modified Gradient Pattern Convolution)提取图像边缘梯度二值特征,在此基础上,提出Enhanced DR-LDPC(Enhanced Dimensionality Reduced Local Directional Pattern Convolution)提取图像增强边缘梯度方向特征.网络采用直方图相似度、卡方检验、常态分布比对的巴氏距离法作为测量依据来进行识别;实验在FERET和CAS-PEAL-R1数据集上进行,相比其他人脸姿态识别方法,提出的二值模式卷积神经网络在识别精度和计算效率上更优异.
文摘目的人脸识别已经得到了广泛应用,但大姿态人脸识别问题仍未完美解决。已有方法或提取姿态鲁棒特征,或进行人脸姿态的正面化。其中主流的人脸正面化方法包括2D回归生成和3D模型形变建模,前者能够生成相对自然真实的人脸,但会引入额外的噪声导致图像信息的扭曲;后者能够保持原始的人脸结构信息,但生成过程是基于物理模型的,不够自然灵活。为此,结合2D和3D方法的优势,本文提出了基于由粗到细形变场的人脸正面化方法。方法该形变场由深度网络以2D回归方式学得,反映的是不同视角人脸图像像素之间的语义级对应关系,可以类3D的方式实现非正面人脸图像的正面化,因此该方法兼具了2D正面化方法的灵活性与3D正面化方法的保真性,且借鉴分步渐进的思路,本文提出了由粗到细的形变场学习框架,以获得更加准确鲁棒的形变场。结果本文采用大姿态人脸识别实验来验证本文方法的有效性,在MultiPIE(multi pose,illumination,expressions)、LFW(labeled faces in the wild)、CFP(celebrities in frontal-profile in the wild)、IJB-A(intelligence advanced research projects activity Janus benchmark-A)等4个数据集上均取得了比已有方法更高的人脸识别精度。结论本文提出的基于由粗到细的形变场学习的人脸正面化方法,综合了2D和3D人脸正面化方法的优点,使人脸正面化结果的学习更加灵活、准确,保持了更多有利于识别的身份信息。
文摘目的人脸姿态偏转是影响人脸识别准确率的一个重要因素,本文利用3维人脸重建中常用的3维形变模型以及深度卷积神经网络,提出一种用于多姿态人脸识别的人脸姿态矫正算法,在一定程度上提高了大姿态下人脸识别的准确率。方法对传统的3维形变模型拟合方法进行改进,利用人脸形状参数和表情参数对3维形变模型进行建模,针对面部不同区域的关键点赋予不同的权值,加权拟合3维形变模型,使得具有不同姿态和面部表情的人脸图像拟合效果更好。然后,对3维人脸模型进行姿态矫正并利用深度学习对人脸图像进行修复,修复不规则的人脸空洞区域,并使用最新的局部卷积技术同时在新的数据集上重新训练卷积神经网络,使得网络参数达到最优。结果在LFW(labeled faces in the wild)人脸数据库和Stirling ESRC(Economic Social Research Council)3维人脸数据库上,将本文算法与其他方法进行比较,实验结果表明,本文算法的人脸识别精度有一定程度的提高。在LFW数据库上,通过对具有任意姿态的人脸图像进行姿态矫正和修复后,本文方法达到了96.57%的人脸识别精确度。在Stirling ESRC数据库上,本文方法在人脸姿态为±22°的情况下,人脸识别准确率分别提高5.195%和2.265%;在人脸姿态为±45°情况下,人脸识别准确率分别提高5.875%和11.095%;平均人脸识别率分别提高5.53%和7.13%。对比实验结果表明,本文提出的人脸姿态矫正算法有效提高了人脸识别的准确率。结论本文提出的人脸姿态矫正算法,综合了3维形变模型和深度学习模型的优点,在各个人脸姿态角度下,均能使人脸识别准确率在一定程度上有所提高。
基金Supported by Fundamental Project of Committee of Science and Technology of Shanghai (No.03DZ14015)
文摘A robust face pose estimation approach is proposed by using face shape statistical model approach and pose parameters are represented by trigonometric functions. The face shape statistical model is firstly built by analyzing the face shapes from different people under varying poses. The shape alignment is vital in the process of building the statistical model. Then, six trigonometric functions are employed to represent the face pose parameters. Lastly, the mapping function is constructed between face image and face pose by linearly relating different parameters. The proposed approach is able to estimate different face poses using a few face training samples. Experimental results are provided to demonstrate its efficiency and accuracy.