期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于深度卷积判别网络的人脸比对方法
1
作者 谷凤伟 陆军 +1 位作者 刘子玄 蔡成涛 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第9期1770-1782,共13页
针对实际应用中人脸比对面临着场景复杂性高、光照、遮挡等问题,为了提高人脸比对准确率,本文提出了一种基于深度卷积判别网络的人脸比对算法MTC-FaceNetSDM。建立了MTC-FaceNetSDM的深度卷积神经网络,在FaceNet网络前端中融合多任务级... 针对实际应用中人脸比对面临着场景复杂性高、光照、遮挡等问题,为了提高人脸比对准确率,本文提出了一种基于深度卷积判别网络的人脸比对算法MTC-FaceNetSDM。建立了MTC-FaceNetSDM的深度卷积神经网络,在FaceNet网络前端中融合多任务级联卷积神经网络得到MTC-FaceNet网络,实现实际场景中的人脸检测提取目标人脸;利用深度卷积神经网络获取高维人脸深度特征,并将FaceNet网络的欧氏距离模块替换为所提出的相似度判别模块SDM,用于高维人脸特征向量比对;最终,利用自制的人脸数据集C-facev1,结合CASIA-WebFace人脸数据集对本文人脸比对算法进行训练,使用人脸数据集LFW和CASIA-FaceV5对训练后的模型进行性能评估。实验结果表明:本文所设计的MTC-FaceNetSDM的人脸比对准确率比MTC-FaceNet整体提高1.48%,对中国人脸比对准确率提高3.80%,可实现多人种的人脸比对,同时该算法具备良好的鲁棒性和泛化能力,达到优良的人脸比对效果,可实际应用于人脸验证系统。 展开更多
关键词 人脸比对 深度卷积判别网络 多任务级联卷积神经网络 相似度判别模块 人脸特征向量
下载PDF
基于卷积神经网络及几何特征对人脸的识别
2
作者 李施展 朱家明 《上海工程技术大学学报》 CAS 2019年第2期148-153,共6页
针对不同的人脸位置,人脸颜色与背景区域颜色会产生较大差异,引入灰度差值算子,确定累积灰度差值变化较大的横坐标,进而判断人脸边界,从而实现对人脸位置的判定.利用神经网络自动学习图像,并选取出抽象程度更高的特征,从而确定面部关键... 针对不同的人脸位置,人脸颜色与背景区域颜色会产生较大差异,引入灰度差值算子,确定累积灰度差值变化较大的横坐标,进而判断人脸边界,从而实现对人脸位置的判定.利用神经网络自动学习图像,并选取出抽象程度更高的特征,从而确定面部关键点位置,计算五官属性值并对五官进行评价打分.引入脸部几何特征指标,将五官评分指标与几何特征指标结合提取人脸特征向量,运用欧式距离算法计算脸部特征向量的相似性并进行比较从而实现人脸识别. 展开更多
关键词 灰度积分投影 深度学习 卷积神经网络 人脸特征向量 欧式距离
下载PDF
用隐马尔可夫模型设计人脸表情识别系统 被引量:9
3
作者 尹星云 王洵 +1 位作者 董兰芳 万寿红 《电子科技大学学报》 EI CAS CSCD 北大核心 2003年第6期725-728,共4页
根据隐马尔可夫模型(HMM)的基本理论和算法设计了一个人脸表情识别系统。该系统由两层HMM组成:低层由六个HMM组成,分别对应六种特定表情。人脸表情特征向量进入系统后,经过低层HMM初步识别,其结果组成高层HMM的观察向量,经过高层HMM解码... 根据隐马尔可夫模型(HMM)的基本理论和算法设计了一个人脸表情识别系统。该系统由两层HMM组成:低层由六个HMM组成,分别对应六种特定表情。人脸表情特征向量进入系统后,经过低层HMM初步识别,其结果组成高层HMM的观察向量,经过高层HMM解码,确认出表情,从而提高了系统的识别率,增强了系统的健壮性。 展开更多
关键词 隐马尔可夫模型 forward-backward算法 VITERBI算法 Baum-WeUch算法 人脸表情识别 人脸表情特征向量
下载PDF
Face mask detection algorithm based on HSV+HOG features and SVM 被引量:6
4
作者 HE Yumin WANG Zhaohui +2 位作者 GUO Siyu YAO Shipeng HU Xiangyang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第3期267-275,共9页
To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machine... To automatically detecting whether a person is wearing mask properly,we propose a face mask detection algorithm based on hue-saturation-value(HSV)+histogram of oriented gradient(HOG)features and support vector machines(SVM).Firstly,human face and five feature points are detected with RetinaFace face detection algorithm.The feature points are used to locate to mouth and nose region,and HSV+HOG features of this region are extracted and input to SVM for training to realize detection of wearing masks or not.Secondly,RetinaFace is used to locate to nasal tip area of face,and YCrCb elliptical skin tone model is used to detect the exposure of skin in the nasal tip area,and the optimal classification threshold can be found to determine whether the wear is properly according to experimental results.Experiments show that the accuracy of detecting whether mask is worn can reach 97.9%,and the accuracy of detecting whether mask is worn correctly can reach 87.55%,which verifies the feasibility of the algorithm. 展开更多
关键词 hue-saturation-value(HSV)features histogram of oriented gradient(HOG)features support vector machine(SVM) face mask detection feature point detection
下载PDF
Multi-modal face parts fusion based on Gabor feature for face recognition 被引量:1
5
作者 相燕 《High Technology Letters》 EI CAS 2009年第1期70-74,共5页
A novel face recognition method, which is a fusion of muhi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved w... A novel face recognition method, which is a fusion of muhi-modal face parts based on Gabor feature (MMP-GF), is proposed in this paper. Firstly, the bare face image detached from the normalized image was convolved with a family of Gabor kernels, and then according to the face structure and the key-points locations, the calculated Gabor images were divided into five parts: Gabor face, Gabor eyebrow, Gabor eye, Gabor nose and Gabor mouth. After that multi-modal Gabor features were spatially partitioned into non-overlapping regions and the averages of regions were concatenated to be a low dimension feature vector, whose dimension was further reduced by principal component analysis (PCA). In the decision level fusion, match results respectively calculated based on the five parts were combined according to linear discriminant analysis (LDA) and a normalized matching algorithm was used to improve the performance. Experiments on FERET database show that the proposed MMP-GF method achieves good robustness to the expression and age variations. 展开更多
关键词 Gabor filter multi-modal Gabor features principal component analysis (PCA) linear discriminant analysis (IDA) normalized matching algorithm
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部