期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于双向伪标签自监督学习的跨人脸-语音匹配方法 被引量:1
1
作者 朱明航 柳欣 +2 位作者 于镇宁 徐行 郑书凯 《计算机研究与发展》 EI CSCD 北大核心 2023年第11期2638-2649,共12页
神经认知科学研究表明,人类大脑在感知语音的过程中常常将结合人脸信息进行跨模态交互分析.然而,现有的跨模态人脸-语音关联方法仍面临着对复杂样本敏感、监督信息缺乏以及语义关联不足等挑战,其主要原因是缺少对潜在共性语义的挖掘.针... 神经认知科学研究表明,人类大脑在感知语音的过程中常常将结合人脸信息进行跨模态交互分析.然而,现有的跨模态人脸-语音关联方法仍面临着对复杂样本敏感、监督信息缺乏以及语义关联不足等挑战,其主要原因是缺少对潜在共性语义的挖掘.针对这些问题,提出了基于双向伪标签自监督学习的跨模态学习架构,用于人脸-语音关联学习与匹配任务.首先,构建跨模态加权残差网络来学习人脸-语音的跨模态共享嵌入,然后提出一种新颖的双向伪标签关联的自监督学习方法,旨在通过一种模态的潜在语义信息去监督另一个模态的特征学习,从而基于这种交互式跨模态自监督学习能够挖掘到人脸-语音间更紧密的关联.为增加挖掘监督信息的判别性,进一步构建了2个辅助损失促使来自相同身份的人脸-语音特征更接近,并使来自不同身份的特征更加疏远.基于大量实验验证,相比较于现有方法,在人脸-语音跨模态匹配任务上获得了全面的提升. 展开更多
关键词 人脸-语音关联 双向伪标签 自监督学习 加权残差网络 潜语义监督
下载PDF
结合双流网络和双向五元组损失的跨人脸-语音匹配
2
作者 柳欣 王锐 +1 位作者 钟必能 王楠楠 《计算机研究与发展》 EI CSCD 北大核心 2022年第3期694-705,共12页
面部视觉信息和语音信息是人机交互过程中最为直接和灵活的方式,从而基于智能方式的人脸和语音跨模态感知吸引了国内外研究学者的广泛关注.然而,由于人脸-语音样本的异质性以及语义鸿沟问题,现有方法并不能很好地解决一些难度比较高的... 面部视觉信息和语音信息是人机交互过程中最为直接和灵活的方式,从而基于智能方式的人脸和语音跨模态感知吸引了国内外研究学者的广泛关注.然而,由于人脸-语音样本的异质性以及语义鸿沟问题,现有方法并不能很好地解决一些难度比较高的跨人脸-语音匹配任务.提出了一种结合双流网络和双向五元组损失的跨人脸-语音特征学习框架,该框架学到的特征可直接用于4种不同的跨人脸-语音匹配任务.首先,在双流深度网络顶端引入一种新的权重共享的多模态加权残差网络,以挖掘人脸和语音模态间的语义关联;接着,设计了一种融合多种样本对构造策略的双向五元组损失,极大地提高了数据利用率和模型的泛化性能;最后,在模型训练中进行ID分类学习,以保证跨模态表示的可分性.实验结果表明,与现有方法相比,能够在4个不同跨人脸-语音匹配任务上取得效果的全面提升,某些评价指标效果提升近5%. 展开更多
关键词 人脸-语音关联 跨模态感知 双流网络 双向五元组损失 加权残差网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部