Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating informa...Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating information by preserving sparse reconstruction relationship of data sets. However, SPP suffers from the fact that every new feature learned from data sets is linear combinations of all the original features, which often makes it difficult to interpret the results. To address this issue, a novel DR method called dual-sparsity preserving projection (DSPP) is proposed to further impose sparsity constraints on the projection directions of SPP. Specifically, the proposed method casts the projection function learning of SPP into a regression-type optimization problem, and then the sparse projections can be efficiently computed by the related lasso algorithm. Experimental results from face databases demonstrate the effectiveness of the proposed algorithm.展开更多
Despite the fact that progress in face recognition algorithms over the last decades has been made, changing lighting conditions and different face orientation still remain as a challenging problem. A standard face rec...Despite the fact that progress in face recognition algorithms over the last decades has been made, changing lighting conditions and different face orientation still remain as a challenging problem. A standard face recognition system identifies the person by comparing the input picture against pictures of all faces in a database and finding the best match. Usually face matching is carried out in two steps: during the first step detection of a face is done by finding exact position of it in a complex background (various lightning condition), and in the second step face identification is performed using gathered databases. In reality detected faces can appear in different position and they can be rotated, so these disturbances reduce quality of the recognition algorithms dramatically. In this paper to increase the identification accuracy we propose original geometric normalization of the face, based on extracted facial feature position such as eyes. For the eyes localization lbllowing methods has been used: color based method, mean eye template and SVM (Support Vector Machine) technique. Experimental investigation has shown that the best results for eye center detection can be achieved using SVM technique. The recognition rate increases statistically by 28% using face orientation normalization based on the eyes position.展开更多
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de...Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.展开更多
Gait representation is an important issue in gait recognition. A simple yet efficient approach, called Interframe Variation Vector (IW), is proposed. IW considers the spatiotemporal motion characteristic of gait, an...Gait representation is an important issue in gait recognition. A simple yet efficient approach, called Interframe Variation Vector (IW), is proposed. IW considers the spatiotemporal motion characteristic of gait, and uses the shape variation information between successive frames to represent gait signature. Different from other features, IVV rather than condenses a gait sequence into single image resulting in spatial sequence lost; it records the whole moving process in an IVV sequence. IVV can encode whole essential features of gait and preserve all the movements of limbs. Experimental results show that the proposed gait representation has a promising recognition performance.展开更多
Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinemat...Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinematics of the normal and abnormal movement states were exploited, 8 kinds of features were extracted. Secondly, 4 multi-layer pereeptrons were employed to classify the features for four 4-driving wheels into 4 kinds of states, i.e. normal, blocked, deadly blocked, and slipping. Finally, avoidance strategies were designed based on this. Experiment results show that the methods can identify most abnormal movement states and avoid the abnormality correctly and timely.展开更多
Aimed at the problems of infrared image recognition under varying illumination,face disguise,etc.,we bring out an infrared human face recognition algorithm based on 2DPCA.The proposed algorithm can work out the covari...Aimed at the problems of infrared image recognition under varying illumination,face disguise,etc.,we bring out an infrared human face recognition algorithm based on 2DPCA.The proposed algorithm can work out the covariance matrix of the training sample easily and directly;at the same time,it costs less time to work out the eigenvector.Relevant experiments are carried out,and the result indicates that compared with the traditional recognition algorithm,the proposed recognition method is swift and has a good adaptability to the changes of human face posture.展开更多
In order to solve the problem caused by variation illumination in human face recognition,we bring forward a face recognition algorithm based on the improved multi-sample. In this algorithm,the face image is processed ...In order to solve the problem caused by variation illumination in human face recognition,we bring forward a face recognition algorithm based on the improved multi-sample. In this algorithm,the face image is processed with Retinex theory,meanwhile,the Gabor filter is adopted to perform the feature extraction. The experimental results show that the application of Retinex theory improves the recognition accuracy,and makes the algorithm more robust to the variation illumination. The Gabor filter is more effective and accurate for extracting more useable facial local features. It is proved that the proposed algorithm has good recognition accuracy and it is stable under variation illumination.展开更多
A decentralized task planning algorithm is proposed for heterogeneous unmanned aerial vehicle(UAV)swarm with different capabilities.The algorithm extends the consensus-based bundle algorithm(CBBA)to account for a more...A decentralized task planning algorithm is proposed for heterogeneous unmanned aerial vehicle(UAV)swarm with different capabilities.The algorithm extends the consensus-based bundle algorithm(CBBA)to account for a more realistic and complex environment.The extension of the algorithm includes handling multi-agent task that requires multiple UAVs collaboratively completed in coordination,and consideration of avoiding obstacles in task scenarios.We propose a new consensus algorithm to solve the multi-agent task allocation problem and use the Dubins algorithm to design feasible paths for UAVs to avoid obstacles and consider motion constraints.Experimental results show that the CBBA extension algorithm can converge to a conflict-free and feasible solution for multi-agent task planning problems.展开更多
Renal physiology in the healthy oldest old has the fol-lowing characteristics, in comparison with the renal physiology in the young: a reduced creatinine clear-ance, tubular pattern of creatinine back-fltration, pre-...Renal physiology in the healthy oldest old has the fol-lowing characteristics, in comparison with the renal physiology in the young: a reduced creatinine clear-ance, tubular pattern of creatinine back-fltration, pre-served proximal tubule sodium reabsorption and uric acid secretion, reduced sodium reabsorption in the thick ascending loop of Henle, reduced free water clear-ance, increased urea excretion, presence of medulla hypotonicity, reduced urinary dilution and concentra-tion capabilities, and fnally a reduced collecting tubules response to furosemide which expresses a reduced potassium excretion in this segment due to a sort of aldosterone resistance. All physiological changes of the aged kidney are the same in both genders.展开更多
The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter ...The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features.展开更多
The facial expression recognition systn using the Ariaboost based on the Split Rectangle feature is proposed in this paper. This system provides more various featmes in increasing speed and accuracy than the Haarolike...The facial expression recognition systn using the Ariaboost based on the Split Rectangle feature is proposed in this paper. This system provides more various featmes in increasing speed and accuracy than the Haarolike featrue of Viola, which is commonly used for the Adaboost training algorithm. The Split Rectangle feature uses the nmsk-like shape composed with 2 independent rectangles, instead of using mask-like shape of Haar-like feature, which is composed of 2 --4 adhered rectangles of Viola. Split Rectangle feature has less di- verged operation than the Haar-like feaze. It also requires less oper- ation because the stun of pixels requires ordy two rectangles. Split Rectangle feature provides various and fast features to the Adaboost, which produrces the strong classifier with increased accuracy and speed. In the experiment, the system had 5.92 ms performance speed and 84 %--94 % accuracy by leaming 5 facial expressions, neutral, happiness, sadness, anger and surprise with the use of the Adaboost based on the Split Rectangle feature.展开更多
Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machi...Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machine learning methods has recently been used for facilitating ERSI.This paper presents a new approach to improve ERSI by adopting support vector machines,which are proven to be effective tools in pattern classification and regression,on the basis of the spatial distribution of electromagnetic radiation sources.Spatial information is converted from 3D cubes to 1D vectors with subscripts as inputs in order to simplify the model.The model is trained with 187 500 data sets in order to enable it to identify the types of radiation source types with an accuracy of up to 99.9%.The influence of parameters(e.g.,penalty parameter,reflection and noise from the ambient environment,and the scaling method for the input data) are discussed.The proposed method has good performance in noisy and reverberant environment.It has an identification accuracy of 82.15% when the signal-to-noise ratio is 20 dB.The proposed method has better accuracy in a noisy environment than artificial neural networks.Given that each Electromagnetic(EM) source has unique spatial characteristics,this method can be used for EM source identification and EM interference diagnostics.展开更多
It is one of the major challenges for face recognition to minimize the disadvantage of il- lumination variations of face images in different scenarios. Local Binary Pattern (LBP) has been proved to be successful for f...It is one of the major challenges for face recognition to minimize the disadvantage of il- lumination variations of face images in different scenarios. Local Binary Pattern (LBP) has been proved to be successful for face recognition. However, it is still very rare to take LBP as an illumination preprocessing approach. In this paper, we propose a new LBP-based multi-scale illumination pre- processing method. This method mainly includes three aspects: threshold adjustment, multi-scale addition and symmetry restoration/neighborhood replacement. Our experiment results show that the proposed method performs better than the existing LBP-based methods at the point of illumination preprocessing. Moreover, compared with some face image preprocessing methods, such as histogram equalization, Gamma transformation, Retinex, and simplified LBP operator, our method can effectively improve the robustness for face recognition against illumination variation, and achieve higher recog- nition rate.展开更多
A closed-loop algorithm to detect human face using color information and reinforcement learning is presented in this paper. By using a skin-color selector, the regions with color "like" that of human skin ar...A closed-loop algorithm to detect human face using color information and reinforcement learning is presented in this paper. By using a skin-color selector, the regions with color "like" that of human skin are selected as candidates for human face. In the next stage, the candidates are matched with a face model and given an evaluation of the match degree by the matching module. And if the evaluation of the match result is too low, a reinforcement learning stage will start to search the best parameters of the skin-color selector. It has been tested using many photos of various ethnic groups under various lighting conditions, such as different light source, high light and shadow. And the experiment result proved that this algorithm is robust to the vary-ing lighting conditions and personal conditions.展开更多
Based on the smart home and facial expression recognition, this paper presents a cognitive emotional model for eldercare robot. By combining with Gabor filter, Local Binary Pattern algorithm(LBP) and k-Nearest Neighbo...Based on the smart home and facial expression recognition, this paper presents a cognitive emotional model for eldercare robot. By combining with Gabor filter, Local Binary Pattern algorithm(LBP) and k-Nearest Neighbor algorithm(KNN) are facial emotional features extracted and recognized. Meanwhile, facial emotional features put influence on robot's emotion state, which is described in AVS emotion space. Then the optimization of smart home environment on the cognitive emotional model is specially analyzed using simulated annealing algorithm(SA). Finally, transition probability from any emotional state to a state of basic emotions is obtained based on the cognitive reappraisal strategy and Euclidean distance. The simulation and experiment have tested and verified the effective in reducing negative emotional state.展开更多
This paper demonstrates the rhetoric technique, narrative function and sign decoding of Nabokocian otherworld in LoBta and Pale Fire to detect not only the presence of the metaphysical otherworld, but also the faint i...This paper demonstrates the rhetoric technique, narrative function and sign decoding of Nabokocian otherworld in LoBta and Pale Fire to detect not only the presence of the metaphysical otherworld, but also the faint influence upon the living. Under the narrative strategies of the otherworld lies Nabokov's aesthetic ethics, which make those who label Nabokov pessimistic and indifferent to be aware of his persistent attempt to push beyond the boundaries of human consciousness and his sincere concern and deep sympathy for the misery of men.展开更多
Accurate and objective rust defect assessment is required to maintain good quality steel bridge coating surfaces and make a decision whether a bridge shall completely or partially be repainted. For more objective rust...Accurate and objective rust defect assessment is required to maintain good quality steel bridge coating surfaces and make a decision whether a bridge shall completely or partially be repainted. For more objective rust defect recognition, digital image recognition methods have been developed for the past few years and they are expected to replace or complement conventional painting inspection methods. Efficient image processing methods are also essential for the successful implementation of steel bridge coating warranty contracting where the owner, usually a state agency, and the contractor inspect steel bridge coating conditions regularly and decide whether additional maintenance actions are needed based on the processed data. There are two approaches to develop automated rust defect recognition methods: applying a statistical method or an artificial intelligence technique. This paper presents the application of previously developed image processing methods for defect evaluations on a bridge coating surface and discusses their limitations under three environmental conditions which are often encountered while acquiring digital images.展开更多
Cosmopolitan democracy model is presented by David Held, beyond idealistic perspectives of left and right ideologies, mainly with a legal view, and found a global impact. As a prominent theorist in the field of democr...Cosmopolitan democracy model is presented by David Held, beyond idealistic perspectives of left and right ideologies, mainly with a legal view, and found a global impact. As a prominent theorist in the field of democracy studies, David Held, by integrating the principle of autonomy in the model of constitutional democracy with the principle of participation in the model of participatory democracy, introduces a novel composition named "cosmopolitan democracy" that is a conception of democratic legal relations. Held is the first man who seeks to investigate democracy separated from the ideological models in relation to general human rights and identifies main areas of power in human life. He considers totally seven sets of rights necessarily enabling people to enjoy a free and equal participation in setting their communities. These rights include: right to health, welfare rights, cultural rights, civil rights, economic rights, political rights, and the right to enjoy a peaceful livelihood. Held's ultimate desire is to realize ideals of cosmopolitan democracy model in the global sphere, beyond the lessons of the West and the East. Through rethinking the theoretical and practical frameworks of this theory in today's world, the current paper seeks to study its role in reproducing democratic realism so that it would prepare the ground for the global consensus far from the ideal models.展开更多
基金Supported by the National Natural Science Foundation of China(11076015)the Shandong Provincial Natural Science Foundation(ZR2010FL011)the Scientific Foundation of Liaocheng University(X10010)~~
文摘Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating information by preserving sparse reconstruction relationship of data sets. However, SPP suffers from the fact that every new feature learned from data sets is linear combinations of all the original features, which often makes it difficult to interpret the results. To address this issue, a novel DR method called dual-sparsity preserving projection (DSPP) is proposed to further impose sparsity constraints on the projection directions of SPP. Specifically, the proposed method casts the projection function learning of SPP into a regression-type optimization problem, and then the sparse projections can be efficiently computed by the related lasso algorithm. Experimental results from face databases demonstrate the effectiveness of the proposed algorithm.
文摘Despite the fact that progress in face recognition algorithms over the last decades has been made, changing lighting conditions and different face orientation still remain as a challenging problem. A standard face recognition system identifies the person by comparing the input picture against pictures of all faces in a database and finding the best match. Usually face matching is carried out in two steps: during the first step detection of a face is done by finding exact position of it in a complex background (various lightning condition), and in the second step face identification is performed using gathered databases. In reality detected faces can appear in different position and they can be rotated, so these disturbances reduce quality of the recognition algorithms dramatically. In this paper to increase the identification accuracy we propose original geometric normalization of the face, based on extracted facial feature position such as eyes. For the eyes localization lbllowing methods has been used: color based method, mean eye template and SVM (Support Vector Machine) technique. Experimental investigation has shown that the best results for eye center detection can be achieved using SVM technique. The recognition rate increases statistically by 28% using face orientation normalization based on the eyes position.
基金Projects(60234030 60404021) supported by the National Natural Science Foundation of China
文摘Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms.
基金National Natural Science Foundation of China ( No.60873179)Shenzhen Technology Fundamental Research Project, China ( No.JC200903180630A)Doctoral Program Foundation of Institutions of Higher Education of China ( No.20090121110032)
文摘Gait representation is an important issue in gait recognition. A simple yet efficient approach, called Interframe Variation Vector (IW), is proposed. IW considers the spatiotemporal motion characteristic of gait, and uses the shape variation information between successive frames to represent gait signature. Different from other features, IVV rather than condenses a gait sequence into single image resulting in spatial sequence lost; it records the whole moving process in an IVV sequence. IVV can encode whole essential features of gait and preserve all the movements of limbs. Experimental results show that the proposed gait representation has a promising recognition performance.
基金Project (60234030) supported by the National Natural Science Foundation of China
文摘Abnormal movement states for a mobile robot were identified by four multi-layer perceptron. In the presence ot abnormality, avoidance strategies were designed to guarantee the safety of the robot. Firstly, the kinematics of the normal and abnormal movement states were exploited, 8 kinds of features were extracted. Secondly, 4 multi-layer pereeptrons were employed to classify the features for four 4-driving wheels into 4 kinds of states, i.e. normal, blocked, deadly blocked, and slipping. Finally, avoidance strategies were designed based on this. Experiment results show that the methods can identify most abnormal movement states and avoid the abnormality correctly and timely.
基金Sponsored by the Natural Science Fund of Heilongjiang province(Grant No. F2007-13)Science and Technology Research Projects in Office of Education of Heilongjiang province(Grant No.11531034)the Heilongjiang Postdoctoral Science Foundation(Grant No.LBH-Z06054)
文摘Aimed at the problems of infrared image recognition under varying illumination,face disguise,etc.,we bring out an infrared human face recognition algorithm based on 2DPCA.The proposed algorithm can work out the covariance matrix of the training sample easily and directly;at the same time,it costs less time to work out the eigenvector.Relevant experiments are carried out,and the result indicates that compared with the traditional recognition algorithm,the proposed recognition method is swift and has a good adaptability to the changes of human face posture.
基金Sponsored by the Science and Technology Research Projects in Office of Education in Heilongjiang Province(Grant No. 11531034)the Natural Science Fund in Heilongjiang Province(Grant No. F2007-13)the Heilongjiang Postdoctoral Science Foundation (Grant No. LBH-Z06054)
文摘In order to solve the problem caused by variation illumination in human face recognition,we bring forward a face recognition algorithm based on the improved multi-sample. In this algorithm,the face image is processed with Retinex theory,meanwhile,the Gabor filter is adopted to perform the feature extraction. The experimental results show that the application of Retinex theory improves the recognition accuracy,and makes the algorithm more robust to the variation illumination. The Gabor filter is more effective and accurate for extracting more useable facial local features. It is proved that the proposed algorithm has good recognition accuracy and it is stable under variation illumination.
文摘A decentralized task planning algorithm is proposed for heterogeneous unmanned aerial vehicle(UAV)swarm with different capabilities.The algorithm extends the consensus-based bundle algorithm(CBBA)to account for a more realistic and complex environment.The extension of the algorithm includes handling multi-agent task that requires multiple UAVs collaboratively completed in coordination,and consideration of avoiding obstacles in task scenarios.We propose a new consensus algorithm to solve the multi-agent task allocation problem and use the Dubins algorithm to design feasible paths for UAVs to avoid obstacles and consider motion constraints.Experimental results show that the CBBA extension algorithm can converge to a conflict-free and feasible solution for multi-agent task planning problems.
文摘Renal physiology in the healthy oldest old has the fol-lowing characteristics, in comparison with the renal physiology in the young: a reduced creatinine clear-ance, tubular pattern of creatinine back-fltration, pre-served proximal tubule sodium reabsorption and uric acid secretion, reduced sodium reabsorption in the thick ascending loop of Henle, reduced free water clear-ance, increased urea excretion, presence of medulla hypotonicity, reduced urinary dilution and concentra-tion capabilities, and fnally a reduced collecting tubules response to furosemide which expresses a reduced potassium excretion in this segment due to a sort of aldosterone resistance. All physiological changes of the aged kidney are the same in both genders.
文摘The successful face recognition based on local binary pattern(LBP)relies on the effective extraction of LBP features and the inferring of similarity between the extracted features.In this paper,we focus on the latter and propose two novel similarity measures for the local matching methods and the holistic matching methods respectively.One is Earth Mover's Distance with Hamming and Lp ground distance(EMD-HammingLp),which is a cross-bin dissimilarity measure for LBP histograms.The other is IMage Hamming Distance(IMHD),which is a dissimilarity measure for the whole LBP images.Experiments on FERET database show that the proposed two similarity measures outperform the state-of-the-art Chi-square similarity measure for extraction of LBP features.
基金supported by the Brain Korea 21 Project in2010,the MKE(The Ministry of Knowledge Economy),Koreathe ITRC(Information Technology Research Center)support programsupervised by the NIPA(National ITIndustry Promotion Agency)(NI-PA-2010-(C1090-1021-0010))
文摘The facial expression recognition systn using the Ariaboost based on the Split Rectangle feature is proposed in this paper. This system provides more various featmes in increasing speed and accuracy than the Haarolike featrue of Viola, which is commonly used for the Adaboost training algorithm. The Split Rectangle feature uses the nmsk-like shape composed with 2 independent rectangles, instead of using mask-like shape of Haar-like feature, which is composed of 2 --4 adhered rectangles of Viola. Split Rectangle feature has less di- verged operation than the Haar-like feaze. It also requires less oper- ation because the stun of pixels requires ordy two rectangles. Split Rectangle feature provides various and fast features to the Adaboost, which produrces the strong classifier with increased accuracy and speed. In the experiment, the system had 5.92 ms performance speed and 84 %--94 % accuracy by leaming 5 facial expressions, neutral, happiness, sadness, anger and surprise with the use of the Adaboost based on the Split Rectangle feature.
基金supported by the National Natural Science Foundation of China under Grant No.61201024
文摘Electromagnetic Radiation Source Identification(ERSI) is a key technology that is widely used in military and radiation management and in electromagnetic interference diagnostics.The discriminative capability of machine learning methods has recently been used for facilitating ERSI.This paper presents a new approach to improve ERSI by adopting support vector machines,which are proven to be effective tools in pattern classification and regression,on the basis of the spatial distribution of electromagnetic radiation sources.Spatial information is converted from 3D cubes to 1D vectors with subscripts as inputs in order to simplify the model.The model is trained with 187 500 data sets in order to enable it to identify the types of radiation source types with an accuracy of up to 99.9%.The influence of parameters(e.g.,penalty parameter,reflection and noise from the ambient environment,and the scaling method for the input data) are discussed.The proposed method has good performance in noisy and reverberant environment.It has an identification accuracy of 82.15% when the signal-to-noise ratio is 20 dB.The proposed method has better accuracy in a noisy environment than artificial neural networks.Given that each Electromagnetic(EM) source has unique spatial characteristics,this method can be used for EM source identification and EM interference diagnostics.
文摘It is one of the major challenges for face recognition to minimize the disadvantage of il- lumination variations of face images in different scenarios. Local Binary Pattern (LBP) has been proved to be successful for face recognition. However, it is still very rare to take LBP as an illumination preprocessing approach. In this paper, we propose a new LBP-based multi-scale illumination pre- processing method. This method mainly includes three aspects: threshold adjustment, multi-scale addition and symmetry restoration/neighborhood replacement. Our experiment results show that the proposed method performs better than the existing LBP-based methods at the point of illumination preprocessing. Moreover, compared with some face image preprocessing methods, such as histogram equalization, Gamma transformation, Retinex, and simplified LBP operator, our method can effectively improve the robustness for face recognition against illumination variation, and achieve higher recog- nition rate.
文摘A closed-loop algorithm to detect human face using color information and reinforcement learning is presented in this paper. By using a skin-color selector, the regions with color "like" that of human skin are selected as candidates for human face. In the next stage, the candidates are matched with a face model and given an evaluation of the match degree by the matching module. And if the evaluation of the match result is too low, a reinforcement learning stage will start to search the best parameters of the skin-color selector. It has been tested using many photos of various ethnic groups under various lighting conditions, such as different light source, high light and shadow. And the experiment result proved that this algorithm is robust to the vary-ing lighting conditions and personal conditions.
基金supported by National Natural Science Foundation of China (Normal Project No. 61170115), (Key Project No.61432004)National Key Technologies R&D Program of China (No.2014BAF08B04)the Foundation of Beijing Engineering and Technology Center for Convergence Networks and Ubiquitous Services
文摘Based on the smart home and facial expression recognition, this paper presents a cognitive emotional model for eldercare robot. By combining with Gabor filter, Local Binary Pattern algorithm(LBP) and k-Nearest Neighbor algorithm(KNN) are facial emotional features extracted and recognized. Meanwhile, facial emotional features put influence on robot's emotion state, which is described in AVS emotion space. Then the optimization of smart home environment on the cognitive emotional model is specially analyzed using simulated annealing algorithm(SA). Finally, transition probability from any emotional state to a state of basic emotions is obtained based on the cognitive reappraisal strategy and Euclidean distance. The simulation and experiment have tested and verified the effective in reducing negative emotional state.
文摘This paper demonstrates the rhetoric technique, narrative function and sign decoding of Nabokocian otherworld in LoBta and Pale Fire to detect not only the presence of the metaphysical otherworld, but also the faint influence upon the living. Under the narrative strategies of the otherworld lies Nabokov's aesthetic ethics, which make those who label Nabokov pessimistic and indifferent to be aware of his persistent attempt to push beyond the boundaries of human consciousness and his sincere concern and deep sympathy for the misery of men.
文摘Accurate and objective rust defect assessment is required to maintain good quality steel bridge coating surfaces and make a decision whether a bridge shall completely or partially be repainted. For more objective rust defect recognition, digital image recognition methods have been developed for the past few years and they are expected to replace or complement conventional painting inspection methods. Efficient image processing methods are also essential for the successful implementation of steel bridge coating warranty contracting where the owner, usually a state agency, and the contractor inspect steel bridge coating conditions regularly and decide whether additional maintenance actions are needed based on the processed data. There are two approaches to develop automated rust defect recognition methods: applying a statistical method or an artificial intelligence technique. This paper presents the application of previously developed image processing methods for defect evaluations on a bridge coating surface and discusses their limitations under three environmental conditions which are often encountered while acquiring digital images.
文摘Cosmopolitan democracy model is presented by David Held, beyond idealistic perspectives of left and right ideologies, mainly with a legal view, and found a global impact. As a prominent theorist in the field of democracy studies, David Held, by integrating the principle of autonomy in the model of constitutional democracy with the principle of participation in the model of participatory democracy, introduces a novel composition named "cosmopolitan democracy" that is a conception of democratic legal relations. Held is the first man who seeks to investigate democracy separated from the ideological models in relation to general human rights and identifies main areas of power in human life. He considers totally seven sets of rights necessarily enabling people to enjoy a free and equal participation in setting their communities. These rights include: right to health, welfare rights, cultural rights, civil rights, economic rights, political rights, and the right to enjoy a peaceful livelihood. Held's ultimate desire is to realize ideals of cosmopolitan democracy model in the global sphere, beyond the lessons of the West and the East. Through rethinking the theoretical and practical frameworks of this theory in today's world, the current paper seeks to study its role in reproducing democratic realism so that it would prepare the ground for the global consensus far from the ideal models.