The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The positi...The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet.展开更多
为更好地仿真研究飞行员事故避免能力和人-机闭环系统的驾驶员诱发震荡(PIO, Pilot Induced Oscillation)特性,提出将飞行员模型按"生理-心理-生理"统一分解为"输入(信号)、处理(决策)、输出(动作)"三个模块,并提...为更好地仿真研究飞行员事故避免能力和人-机闭环系统的驾驶员诱发震荡(PIO, Pilot Induced Oscillation)特性,提出将飞行员模型按"生理-心理-生理"统一分解为"输入(信号)、处理(决策)、输出(动作)"三个模块,并提出一种新型多维比例微分型非线性飞行员模型(MPDNLPM,Multi-Dimension Proportion-Differential Nonlinear Pilot Model)。结合某机着舰backside跟踪控制状态下动力学模型进行了仿真研究。结果表明:人-机闭环系统控制效果略优于理想P控制;成熟飞行员仍可出现PIO;恰当的预估、及时的响应和合理的操纵增益控制是防止PIO和事故的三项关键能力;提出的模块化分解方法合理、有效;MPDNLPM可揭示人-机系统的内在规律。展开更多
The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this prob...The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this problem,a closed‑loop feedback accuracy compensation method for robot joints was proposed.Firstly,a Chebyshev polynomial error estimation model was established which took geometric error and non‑geometric error into account.In addition,the absolute linear grating scale was installed at each joint of the robot and the positioning error of the robot end was mapped to the joint angle.And the joint angle corrected value was obtained.Furthermore,the closed‑loop feedback of robot joints was established to realize the online correction of the positioning error.Finally,an experiment on the KUKA KR210 industrial robot was conducted to demonstrate the effectiveness of the method.The result shows that the maximum absolute positioning error of the robot is reduced by 75%from 0.76 mm to 0.19 mm.This method can compensate the robot joint backlash effectively and further improve the absolute positioning accuracy of the robot.展开更多
基金Project(51221004)supported by the Science Fund for Creative Research Groups of National Natural Science Foundation of ChinaProject supported by the Program for Zhejiang Leading Team of S&T Innovation,China
文摘The semi-round rigid feet would cause position-posture deviation problem because the actual foothold position is hardly known due to the rolling effect of the semi-round rigid feet during the robot walking. The position-posture deviation problem may harm to the stability and the harmony of the robot, or even makes the robot tip over and fail to walk forward. Focused on the position-posture deviation problem of multi-legged walking robots with semi-round rigid feet, a new method of position-posture closed-loop control is proposed to solve the position-posture deviation problem caused by semi-round rigid feet, based on the inverse velocity kinematics of the multi-legged walking robots. The position-posture closed-loop control is divided into two parts: the position closed-loop control and the posture closed-loop control. Thus, the position-posture control for the robot which is a tight coupling and nonlinear system is decoupled. Co-simulations of position-posture open-loop control and position-posture closed-loop control by MATLAB and ADAMS are implemented, respectively. The co-simulation results verify that the position-posture closed-loop control performs well in solving the position-posture deviation problem caused by semi-round rigid feet.
文摘为更好地仿真研究飞行员事故避免能力和人-机闭环系统的驾驶员诱发震荡(PIO, Pilot Induced Oscillation)特性,提出将飞行员模型按"生理-心理-生理"统一分解为"输入(信号)、处理(决策)、输出(动作)"三个模块,并提出一种新型多维比例微分型非线性飞行员模型(MPDNLPM,Multi-Dimension Proportion-Differential Nonlinear Pilot Model)。结合某机着舰backside跟踪控制状态下动力学模型进行了仿真研究。结果表明:人-机闭环系统控制效果略优于理想P控制;成熟飞行员仍可出现PIO;恰当的预估、及时的响应和合理的操纵增益控制是防止PIO和事故的三项关键能力;提出的模块化分解方法合理、有效;MPDNLPM可揭示人-机系统的内在规律。
基金supported by the National Natural Science Foundation of China(Nos.51875287, 52075250)the Special Fund for Transformation of Scientific,and Technological Achievements of Jiangsu Province(No.BA2018053)
文摘The existing kinematic parameter calibration method cannot further improve the absolute positioning accuracy of the robot due to the uncertainty of positioning error caused by robot joint backlash.In view of this problem,a closed‑loop feedback accuracy compensation method for robot joints was proposed.Firstly,a Chebyshev polynomial error estimation model was established which took geometric error and non‑geometric error into account.In addition,the absolute linear grating scale was installed at each joint of the robot and the positioning error of the robot end was mapped to the joint angle.And the joint angle corrected value was obtained.Furthermore,the closed‑loop feedback of robot joints was established to realize the online correction of the positioning error.Finally,an experiment on the KUKA KR210 industrial robot was conducted to demonstrate the effectiveness of the method.The result shows that the maximum absolute positioning error of the robot is reduced by 75%from 0.76 mm to 0.19 mm.This method can compensate the robot joint backlash effectively and further improve the absolute positioning accuracy of the robot.