A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms relate...A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.展开更多
In this paper, optimal filtering problem for a class of linear Gaussian systems is studied. The system states are updated at a fast uniform sampling rate and the measurements are sampled at a slow uniform sampling rat...In this paper, optimal filtering problem for a class of linear Gaussian systems is studied. The system states are updated at a fast uniform sampling rate and the measurements are sampled at a slow uniform sampling rate. The updating rate of system states is several times the sampling rate of measurements and the multiple is constant. To solve the problem,we will propose a self-tuning asynchronous filter whose contributions are twofold. First, the optimal filter at the sampling times when the measurements are available is derived in the linear minimum variance sense. Furthermore, considering the variation of noise statistics, a regulator is introduced to adjust the filtering coefficients adaptively. The case studies of wheeled robot navigation system and air quality evaluation system will show the effectiveness and practicability in engineering.展开更多
Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling...Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.展开更多
Since ancient times, man has been concerned to create an artificial structure similar to itself. This concern has remained constant attention and creative thinkers most profound since antiquity until today, it is of g...Since ancient times, man has been concerned to create an artificial structure similar to itself. This concern has remained constant attention and creative thinkers most profound since antiquity until today, it is of greatest interest. This article aims to highlight the most significant moments of the evolution from mechanical creatures mythical or real, from antiquity to the present humanoid robots. There are thus shown the most significant variants humanoid imagined or realized since Talos, described in Greek mythology, continuing with mechanical machines during late Roman Empire, the Byzantine Empire and then the Renaissance of the post-renaissance, then they are shown the main achievements of the industrialization period from the nineteenth to the early part of the twentieth century, then to the most important made in the last decades of the twentieth century and early twenty-first century. The work is important to stimulate concerns academic theorists and practice but also in the industrial practice specializing in robotics and more generally in mechatronics. It also opens the prospect of defining the concept of an artificial humanoid useful both for human prosthesis with certain disabilities, and a humanoid robot performance.展开更多
Today, automated robot welding of components with low tolerances in series production is state-of-the-art. But turning to small batch production particularly of parts with high tolerances, engineering and construction...Today, automated robot welding of components with low tolerances in series production is state-of-the-art. But turning to small batch production particularly of parts with high tolerances, engineering and construction of automated solutions is just at the beginning of providing economic efficiency. While weld seam tracking is well established for the described problem, geometric recognition of weldments is not yet solved satisfactorily. This paper will present an optimisation approach of a laser sensor guided and programmed robot welding system which was developed within the project ROPROF at the TU Dortmund. With this development, a working prototype of a robot weld system was built by a steel construction company as well as additional demonstration software showing the potential and transferability of adjusted geometric location of weldments for industrial applications.展开更多
基金Project(10772113) supported by the National Natural Science Foundation of China
文摘A complete geometric nonlinear formulation for rigid-flexible coupling dynamics of a flexible beam undergoing large overall motion was proposed based on virtual work principle, in which all the high-order terms related to coupling deformation were included in dynamic equations. Simulation examples of the flexible beam with prescribed rotation and free rotation were investigated. Numerical results show that the use of the first-order approximation coupling (FOAC) model may lead to a significant error when the flexible beam experiences large deformation or large deformation velocity. However, the correct solutions can always be obtained by using the present complete model. The difference in essence between this model and the FOAC model is revealed. These coupling high-order terms, which are ignored in FOAC model, have a remarkable effect on the dynamic behavior of the flexible body. Therefore, these terms should be included for the rigid-flexible dynamic modeling and analysis of flexible body undergoing motions with high speed.
基金supported in part by the National High Technology Research and Development Program of China(863 Program)(2014AA06A503)the National Natural Science Foundation of China(61422307,61673350,61673361)+1 种基金the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of Chinathe Youth Top-notch Talent Support Program and the 1000-talent Youth Program and the Youth Yangtze River Scholarship
文摘In this paper, optimal filtering problem for a class of linear Gaussian systems is studied. The system states are updated at a fast uniform sampling rate and the measurements are sampled at a slow uniform sampling rate. The updating rate of system states is several times the sampling rate of measurements and the multiple is constant. To solve the problem,we will propose a self-tuning asynchronous filter whose contributions are twofold. First, the optimal filter at the sampling times when the measurements are available is derived in the linear minimum variance sense. Furthermore, considering the variation of noise statistics, a regulator is introduced to adjust the filtering coefficients adaptively. The case studies of wheeled robot navigation system and air quality evaluation system will show the effectiveness and practicability in engineering.
基金Work supported by the Lancaster University,UK and Jiangsu Provincial Laboratory of Advanced Robotics,SooChow University,ChinaProject(BK2009509) supported by the Natural Science Foundation of Jiangsu Province,China+1 种基金Project(K5117827) supported by the Scientific Research Foundation for the Returned Scholars,Ministry of Education of ChinaProject(Q3117918) supported by the Scientific Research Foundation for Young Teachers of Soochow University,China
文摘Various control systems for a robotic excavator named LUCIE (Lancaster University Computerized and Intelligent Excavator),were investigated. The excavator is being developed to dig trenches autonomously. One stumbling block is the achievement of adequate,accurate,quick and smooth movement under automatic control. Here,both classical and modern approaches are considered,including proportional-integral-derivative (PID) control tuned by conventional Zigler-Nichols rules,linear proportional-integral-plus (PIP) control,and a novel nonlinear PIP controller based on a state-dependent parameter (SDP) model structure,in which the parameters are functionally dependent on other variables in the system. Implementation results for the excavator joint arms control demonstrate that SDP-PIP controller provides the improved performance with fast,smooth and accurate response in comparison with both PID and linearized PIP control.
文摘Since ancient times, man has been concerned to create an artificial structure similar to itself. This concern has remained constant attention and creative thinkers most profound since antiquity until today, it is of greatest interest. This article aims to highlight the most significant moments of the evolution from mechanical creatures mythical or real, from antiquity to the present humanoid robots. There are thus shown the most significant variants humanoid imagined or realized since Talos, described in Greek mythology, continuing with mechanical machines during late Roman Empire, the Byzantine Empire and then the Renaissance of the post-renaissance, then they are shown the main achievements of the industrialization period from the nineteenth to the early part of the twentieth century, then to the most important made in the last decades of the twentieth century and early twenty-first century. The work is important to stimulate concerns academic theorists and practice but also in the industrial practice specializing in robotics and more generally in mechatronics. It also opens the prospect of defining the concept of an artificial humanoid useful both for human prosthesis with certain disabilities, and a humanoid robot performance.
文摘Today, automated robot welding of components with low tolerances in series production is state-of-the-art. But turning to small batch production particularly of parts with high tolerances, engineering and construction of automated solutions is just at the beginning of providing economic efficiency. While weld seam tracking is well established for the described problem, geometric recognition of weldments is not yet solved satisfactorily. This paper will present an optimisation approach of a laser sensor guided and programmed robot welding system which was developed within the project ROPROF at the TU Dortmund. With this development, a working prototype of a robot weld system was built by a steel construction company as well as additional demonstration software showing the potential and transferability of adjusted geometric location of weldments for industrial applications.