Hierarchical porous zeolites attract great at- tention because of their porosity on different scales to improve molecular diffusion. Here, we report mesoporous Faujasite (FAU) zeolite nanosheets with intergrown stru...Hierarchical porous zeolites attract great at- tention because of their porosity on different scales to improve molecular diffusion. Here, we report mesoporous Faujasite (FAU) zeolite nanosheets with intergrown structure synthe- sized in an additive-free system. The sample was composed of uniform nanosheets with a slice thickness of -50 nm, which held a honeycomb-like structure with abundant mesopores. This material exhibits both microporous and mesoporous structure: the intrinsic micropores with a diameter about 0.74 nm in the zeolite framework and the mesopores with a diameter about 10 nm existing within the zeolite nanosheets. The Si/AI ratios can be adjusted from I.I to 1.9 (zeolites X or Y). In addition, this simple and environment-friendly method may provide inspiration to the synthesis of other hierarchical zeolites.展开更多
基金supported by the National Natural Science Foundation of China(21533002 and 21571128)the National Excellent Doctoral Dissertation of China(201454)
文摘Hierarchical porous zeolites attract great at- tention because of their porosity on different scales to improve molecular diffusion. Here, we report mesoporous Faujasite (FAU) zeolite nanosheets with intergrown structure synthe- sized in an additive-free system. The sample was composed of uniform nanosheets with a slice thickness of -50 nm, which held a honeycomb-like structure with abundant mesopores. This material exhibits both microporous and mesoporous structure: the intrinsic micropores with a diameter about 0.74 nm in the zeolite framework and the mesopores with a diameter about 10 nm existing within the zeolite nanosheets. The Si/AI ratios can be adjusted from I.I to 1.9 (zeolites X or Y). In addition, this simple and environment-friendly method may provide inspiration to the synthesis of other hierarchical zeolites.