The conversion of inert N_(2)and CO_(2)into urea by electrocatalytic technology not only reduces the cost of urea synthesis in future,but also alleviatesthe environmental pollution problem caused by carbon emission in...The conversion of inert N_(2)and CO_(2)into urea by electrocatalytic technology not only reduces the cost of urea synthesis in future,but also alleviatesthe environmental pollution problem caused by carbon emission in traditional industrial production.However,facing downside factors such as strong competitive reactions and unclear reaction mechanism,the design of high-performance urea catalysts is imminent.This study demonstrates that W_(18)O_(49)system doped heteronuclear metals(TM=Fe,Co,Ni)can effectively solve the problem of competitive adsorption between N_(2)and CO_(2)and realize the co-adsorption of N_(2)and CO_(2)at diverse sites.Their theoretical limiting voltages for urea production on TM-W_(18)O_(49)(TM=Fe,Co,Ni)systems are-0.46 V,-0.42 V and-0.52 V,respectively.The results are all lower than that of the contrastive voltage in pristine W_(18)O_(49)system(-0.91 V),further indicating the rationality and necessity of single-atom doped strategy for the co-reduction of two molecules.Specially,Co-W_(18)O_(49)can theoretically inhibit the side reactions of NRR,CO_(2)RR,and HER,which deserve future experimental exploration in future.The study suggests that doping heteronuclear metal into transition metal oxides is a feasible scheme to solve competitive adsorption and improve catalytic performance.展开更多
In this work,a novel plasmon-assisted UV-vis-NIR-driven W_(18)O_(49)/Cd_(0.5)Zn_(0.5)S heterostructure photocatalyst was obtained by a facile ultrasonic-assisted electrostatic self-assembly strategy.The hybrid exhibit...In this work,a novel plasmon-assisted UV-vis-NIR-driven W_(18)O_(49)/Cd_(0.5)Zn_(0.5)S heterostructure photocatalyst was obtained by a facile ultrasonic-assisted electrostatic self-assembly strategy.The hybrid exhibits extraordinary H2 evolution activity of 147.7 mmol·g^(-1)·h^(-1) at room temperature due to the efficient charge separation and expanded light absorption.Our investigation shows that the unique Step-scheme(S-scheme)charge transfer and the‘hot electron’injection are both responsible for the extraordinary H2 evolution process,depending on the wavelength of the incident light.Moreover,by accelerating the surface reaction kinetics,the activity can be further elevated to 306.1 mmol·g^(-1)·h^(-1),accompanied by a high apparent quantum yield of 45.3% at 365±7.5 nm.This work provides us a potential strategy for the highly efficient conversion of the solar energy by elaborately combining a nonstoichiometric ratio plasmonic material with an appropriate active photocatalyst.展开更多
Non-stoichiometric W_(18)O_(49)(WO)prepared by solvothermal method has excellent NIR absorption due to the localized surface plasmon resonance effect caused by oxygen vacancies.This has great potential in the field of...Non-stoichiometric W_(18)O_(49)(WO)prepared by solvothermal method has excellent NIR absorption due to the localized surface plasmon resonance effect caused by oxygen vacancies.This has great potential in the field of using sunlight to convert carbon dioxide into organic fuels.In addition,through the amination of CdSe,the one-dimensional/two-dimensional step-scheme(S-scheme)WO/CdSe-diethylenetriamine(WO/CdSe-D)photocatalyst with electron transmission channels driven by visible light to NIR light is constructed by microwave solvothermal method.The LSPR of WO and the synergistic effect of coupling semiconductors to construct S-scheme heterojunctions can improve light utilization and achieve efficient charge carrier transfer efficiency.The optimized photocatalyst of 35%WO/CdSe-D has the best CO_(2) reduction performance compared to WO and CdSe-D,and the yield is 25.37μmol h^(–1) g^(–1).X-ray photoelectron spectroscopy was used to verify the charge transfer path of the S-scheme WO/CdSe-D heterojunction.This work provides a possibility for the application of non-stoichiometric oxides rich in oxygen vacancies in the field of photocatalytic CO_(2) reduction.展开更多
The electrochemical conversion is closely correlated with the electrocatalytic activities of the electrocatalyst.Herein,the urchin-like Ni-doped W_(18)O_(49)/NF with enriched active sites was prepared by solvothermal ...The electrochemical conversion is closely correlated with the electrocatalytic activities of the electrocatalyst.Herein,the urchin-like Ni-doped W_(18)O_(49)/NF with enriched active sites was prepared by solvothermal method followed by a low-temperature pyrolysis treatment was reported.Results demonstrate that the incorporation of Ni-doping triggers the lattice distortion of W_(18)O_(49) for the increasement of oxygen defects.Further,high-valent W^(6+)are partially reduced to low-valent W^(4+),wherein the electrons originate from the oxidation process of Ni^(2+)to Ni^(3+).The Ni^(3+)ions show an enhanced orbital overlap with the OER reaction intermediates.The generated W^(4+)ions contribute to release oxygen vacancies,eventually reorganizing Ni-doped W_(18)O_(49)/NF to unique electrochemical active species with a special amorphous-crystalline interface(AM/NiWO_x/NiOOH/NF).Simultaneously,the reconstruction results in an optimized valence band and conduction band.Eventually,the resultant AM/NiWO_x/NiOOH/NF with abundant active sites and improved oxidation/reduction capability exhibits more superior catalytic performance compared with the Ni-doped W_(18)O_(49)/NF counterpart.This study gives more insights in the electrochemical evolution of the tungsten-based oxide and provides effective strategies for optimizing the catalytic activity of materials with inherent hydrogen evolution reaction limitations.展开更多
C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)and W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were successfully prepared by using SiO_(2)template followed by gradual deposition method.The degradation of phenol solution and p...C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)and W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were successfully prepared by using SiO_(2)template followed by gradual deposition method.The degradation of phenol solution and photolysis ability were tested to characterize its photocatalytic activity.Compared with the single-shelled C_(3)N_(4)and C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,double-shelled W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres possessed larger surface area and fast charge separation efficiency,exhibiting about 8.9 times and 4.0 times higher H_(2)evolution than those of C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,respectively.The photocatalytic mechanism of the W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were carefully investigated according to the results of morphology design and photoelectric performance.A Z scheme mechanism based on the construction of heterojunctions was proposed to explain the improvement of photocatalytic performance.This new charge transfer mechanism appears to greatly inhibit the recombination of electrons/holes during the charge transfer process,while maintaining its strong hydrogen reduction ability,resulting in a higher photocatalytic performance.展开更多
Methanol-to-olefins(MTO)process is one of the most critical pathways to produce low carbon olefins.Typically,the reaction is driven by thermal catalysis,which inevitably needs to consume large amounts of fossil fuel.D...Methanol-to-olefins(MTO)process is one of the most critical pathways to produce low carbon olefins.Typically,the reaction is driven by thermal catalysis,which inevitably needs to consume large amounts of fossil fuel.Developing a new technique to substitute for the fuel burning is urgent for MTO process to improve the industry prospects and sustainability.Herein,we report a novel W_(18)O_(49)/Au/SAPO-34(W/Au/S),a multifunctional photothermal catalyst for the MTO reaction.A high methanol conversion was achieved under xenonum(Xe)lamp irradiation,yielding methyl ether(ME)and ethylene as the main products.The optimized W/Au/S catalysts showed ethylene yield as high as 250μmol in 60 min,which was 2.5 times higher than that of Au/SAPO-34.The physiochemical characterization revealed that the SAPO-34 molecular sieves were surrounded by Au and W_(18)O_(49)nanoparticles,which exhibited a strong localized surface plasmon resonance excitation around 540 nm and light absorption beyond 500 nm.The multifunctional catalysts showed a strong photothermal effect,arising from the broadened light absorption of Au and W_(18)O_(49)nanoparticles,leading to a temperature as high as 250℃on the surface of the catalysts.Mechanism study showed that the superior ethylene selectivity of W/Au/S catalysts was attributed to the moderating acidic sites of W_(18)O_(49)for methanol dehydration to ethylene.This research may provide new insight for designing heterostructures to improve photo-to-chemical conversion performance and is expected to accelerate progress toward the excellent multifunctional photothermal catalysts with broad light absorption for methanol activation and C-C bond formation.展开更多
基金The authors gratefully acknowledge financial support from the Youth Development Foundation of Jilin Province(No.20230508183RC)the National Natural Science Foundation of China(No.22403014,No.21673036)+2 种基金the China Postdoctoral Science Foundation(No.2023M730539,No.2024T170121)the Fundamental Research Funds for the Central Universities(No.2412022ZD050,No.2412023QD012)Some computations were carried out on TianHe-2 at LvLiang Cloud Computing Center of China.
文摘The conversion of inert N_(2)and CO_(2)into urea by electrocatalytic technology not only reduces the cost of urea synthesis in future,but also alleviatesthe environmental pollution problem caused by carbon emission in traditional industrial production.However,facing downside factors such as strong competitive reactions and unclear reaction mechanism,the design of high-performance urea catalysts is imminent.This study demonstrates that W_(18)O_(49)system doped heteronuclear metals(TM=Fe,Co,Ni)can effectively solve the problem of competitive adsorption between N_(2)and CO_(2)and realize the co-adsorption of N_(2)and CO_(2)at diverse sites.Their theoretical limiting voltages for urea production on TM-W_(18)O_(49)(TM=Fe,Co,Ni)systems are-0.46 V,-0.42 V and-0.52 V,respectively.The results are all lower than that of the contrastive voltage in pristine W_(18)O_(49)system(-0.91 V),further indicating the rationality and necessity of single-atom doped strategy for the co-reduction of two molecules.Specially,Co-W_(18)O_(49)can theoretically inhibit the side reactions of NRR,CO_(2)RR,and HER,which deserve future experimental exploration in future.The study suggests that doping heteronuclear metal into transition metal oxides is a feasible scheme to solve competitive adsorption and improve catalytic performance.
文摘In this work,a novel plasmon-assisted UV-vis-NIR-driven W_(18)O_(49)/Cd_(0.5)Zn_(0.5)S heterostructure photocatalyst was obtained by a facile ultrasonic-assisted electrostatic self-assembly strategy.The hybrid exhibits extraordinary H2 evolution activity of 147.7 mmol·g^(-1)·h^(-1) at room temperature due to the efficient charge separation and expanded light absorption.Our investigation shows that the unique Step-scheme(S-scheme)charge transfer and the‘hot electron’injection are both responsible for the extraordinary H2 evolution process,depending on the wavelength of the incident light.Moreover,by accelerating the surface reaction kinetics,the activity can be further elevated to 306.1 mmol·g^(-1)·h^(-1),accompanied by a high apparent quantum yield of 45.3% at 365±7.5 nm.This work provides us a potential strategy for the highly efficient conversion of the solar energy by elaborately combining a nonstoichiometric ratio plasmonic material with an appropriate active photocatalyst.
文摘Non-stoichiometric W_(18)O_(49)(WO)prepared by solvothermal method has excellent NIR absorption due to the localized surface plasmon resonance effect caused by oxygen vacancies.This has great potential in the field of using sunlight to convert carbon dioxide into organic fuels.In addition,through the amination of CdSe,the one-dimensional/two-dimensional step-scheme(S-scheme)WO/CdSe-diethylenetriamine(WO/CdSe-D)photocatalyst with electron transmission channels driven by visible light to NIR light is constructed by microwave solvothermal method.The LSPR of WO and the synergistic effect of coupling semiconductors to construct S-scheme heterojunctions can improve light utilization and achieve efficient charge carrier transfer efficiency.The optimized photocatalyst of 35%WO/CdSe-D has the best CO_(2) reduction performance compared to WO and CdSe-D,and the yield is 25.37μmol h^(–1) g^(–1).X-ray photoelectron spectroscopy was used to verify the charge transfer path of the S-scheme WO/CdSe-D heterojunction.This work provides a possibility for the application of non-stoichiometric oxides rich in oxygen vacancies in the field of photocatalytic CO_(2) reduction.
基金supported by the National Natural Science Foundation of China (52073166)the China Scholarship Council (CSC) for the Research Training Program of Guojuan Hai to study at University of Wollongong(201908610223)+5 种基金the Xi’an Key Laboratory of Green Manufacture of Ceramic Materials Foundation (2019220214SYS017CG039)the Key Program for International S&T Cooperation Projects of Shaanxi Province(2020KW-038, 2020GHJD-04)the Science and Technology Program of Xi’an,China (2020KJRC0009)the Scientific Research Program Funded by Shaanxi Provincial Education Department(No. 20JY001)Science and Technology Resource Sharing Platform of Shaanxi Province (2020PT-022)Science and Technology Plan of Weiyang District,Xi’an (202009)。
文摘The electrochemical conversion is closely correlated with the electrocatalytic activities of the electrocatalyst.Herein,the urchin-like Ni-doped W_(18)O_(49)/NF with enriched active sites was prepared by solvothermal method followed by a low-temperature pyrolysis treatment was reported.Results demonstrate that the incorporation of Ni-doping triggers the lattice distortion of W_(18)O_(49) for the increasement of oxygen defects.Further,high-valent W^(6+)are partially reduced to low-valent W^(4+),wherein the electrons originate from the oxidation process of Ni^(2+)to Ni^(3+).The Ni^(3+)ions show an enhanced orbital overlap with the OER reaction intermediates.The generated W^(4+)ions contribute to release oxygen vacancies,eventually reorganizing Ni-doped W_(18)O_(49)/NF to unique electrochemical active species with a special amorphous-crystalline interface(AM/NiWO_x/NiOOH/NF).Simultaneously,the reconstruction results in an optimized valence band and conduction band.Eventually,the resultant AM/NiWO_x/NiOOH/NF with abundant active sites and improved oxidation/reduction capability exhibits more superior catalytic performance compared with the Ni-doped W_(18)O_(49)/NF counterpart.This study gives more insights in the electrochemical evolution of the tungsten-based oxide and provides effective strategies for optimizing the catalytic activity of materials with inherent hydrogen evolution reaction limitations.
基金Supported by the National Natural Science Foundation of China(Nos.91963207 and 12075174)。
文摘C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)and W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were successfully prepared by using SiO_(2)template followed by gradual deposition method.The degradation of phenol solution and photolysis ability were tested to characterize its photocatalytic activity.Compared with the single-shelled C_(3)N_(4)and C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,double-shelled W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres possessed larger surface area and fast charge separation efficiency,exhibiting about 8.9 times and 4.0 times higher H_(2)evolution than those of C_(3)N_(4),C_(3)N_(4)@Ti_(3)C_(2)hollow spheres,respectively.The photocatalytic mechanism of the W_(18)O_(49)@C_(3)N_(4)@Ti_(3)C_(2)hollow spheres were carefully investigated according to the results of morphology design and photoelectric performance.A Z scheme mechanism based on the construction of heterojunctions was proposed to explain the improvement of photocatalytic performance.This new charge transfer mechanism appears to greatly inhibit the recombination of electrons/holes during the charge transfer process,while maintaining its strong hydrogen reduction ability,resulting in a higher photocatalytic performance.
基金financially supported by the High-level Innovative Talent Cultivation Project of Guizhou Province(No.GZSQCC2019003)the Natural Science Research Project of Guizhou Provincial Department of Education(No.QJHKY Zi[2021]257)the Academic New Seedling Cultivation and Innovation Exploration Project of Guizhou Institute of Technology(No.GZLGXM-08)。
文摘Methanol-to-olefins(MTO)process is one of the most critical pathways to produce low carbon olefins.Typically,the reaction is driven by thermal catalysis,which inevitably needs to consume large amounts of fossil fuel.Developing a new technique to substitute for the fuel burning is urgent for MTO process to improve the industry prospects and sustainability.Herein,we report a novel W_(18)O_(49)/Au/SAPO-34(W/Au/S),a multifunctional photothermal catalyst for the MTO reaction.A high methanol conversion was achieved under xenonum(Xe)lamp irradiation,yielding methyl ether(ME)and ethylene as the main products.The optimized W/Au/S catalysts showed ethylene yield as high as 250μmol in 60 min,which was 2.5 times higher than that of Au/SAPO-34.The physiochemical characterization revealed that the SAPO-34 molecular sieves were surrounded by Au and W_(18)O_(49)nanoparticles,which exhibited a strong localized surface plasmon resonance excitation around 540 nm and light absorption beyond 500 nm.The multifunctional catalysts showed a strong photothermal effect,arising from the broadened light absorption of Au and W_(18)O_(49)nanoparticles,leading to a temperature as high as 250℃on the surface of the catalysts.Mechanism study showed that the superior ethylene selectivity of W/Au/S catalysts was attributed to the moderating acidic sites of W_(18)O_(49)for methanol dehydration to ethylene.This research may provide new insight for designing heterostructures to improve photo-to-chemical conversion performance and is expected to accelerate progress toward the excellent multifunctional photothermal catalysts with broad light absorption for methanol activation and C-C bond formation.