The structural and electrical properties of lead free Srx-xLax(Tio.sFeo.5)O3 (SLTFO) prepared by standard solid state reaction technique were studied. The X-ray diffraction analysis confirmed the formation of a si...The structural and electrical properties of lead free Srx-xLax(Tio.sFeo.5)O3 (SLTFO) prepared by standard solid state reaction technique were studied. The X-ray diffraction analysis confirmed the formation of a single-phase cubic perovskite structure. The compositional dependence of lattice constant, density and microstructural studies show that they vary significantly with La3+ content. When measured at 10 kHz, all the compositions of SLTFO at room temperature exhibit a high permittivity (about 104) and low dielectric loss (about 10-3). SLTFO also display minimum dielectric loss within the lower and higher limits of frequency, indicating that the samples are of good quality. It is concluded from the calculated ac conductivity that the conduction is due to mixed polarons hopping. The complex impedance plot exhibits a tendency of forming a single semicircular arc for all compositions, which implies a dominance of grain boundary resistance on the impedance. Impedance parameters were determined by fitting the experimental data with Cole-Cole empirical formula. The results of the present experiment indicate that the lead free SLTFO materials with higher permittivity and lower dielectric loss have possible practical applications.展开更多
This paper is concerned with the stability and superconvergence analysis of the famous finite-difference time-domain (FDTD) scheme for the 2D Maxwell equations in a lossy medium with a perfectly electric conducting (P...This paper is concerned with the stability and superconvergence analysis of the famous finite-difference time-domain (FDTD) scheme for the 2D Maxwell equations in a lossy medium with a perfectly electric conducting (PEC) boundary condition, employing the energy method. To this end, we first establish some new energy identities for the 2D Maxwell equations in a lossy medium with a PEC boundary condition. Then by making use of these energy identities, it is proved that the FDTD scheme and its time difference scheme are stable in the discrete L2 and H1 norms when the CFL condition is satisfied. It is shown further that the solution to both the FDTD scheme and its time difference scheme is second-order convergent in both space and time in the discrete L2 and H1 norms under a slightly stricter condition than the CFL condition. This means that the solution to the FDTD scheme is superconvergent. Numerical results are also provided to confirm the theoretical analysis.展开更多
基金Project supported by CASR of Bangladesh University of Engineering and Technology(BUET)
文摘The structural and electrical properties of lead free Srx-xLax(Tio.sFeo.5)O3 (SLTFO) prepared by standard solid state reaction technique were studied. The X-ray diffraction analysis confirmed the formation of a single-phase cubic perovskite structure. The compositional dependence of lattice constant, density and microstructural studies show that they vary significantly with La3+ content. When measured at 10 kHz, all the compositions of SLTFO at room temperature exhibit a high permittivity (about 104) and low dielectric loss (about 10-3). SLTFO also display minimum dielectric loss within the lower and higher limits of frequency, indicating that the samples are of good quality. It is concluded from the calculated ac conductivity that the conduction is due to mixed polarons hopping. The complex impedance plot exhibits a tendency of forming a single semicircular arc for all compositions, which implies a dominance of grain boundary resistance on the impedance. Impedance parameters were determined by fitting the experimental data with Cole-Cole empirical formula. The results of the present experiment indicate that the lead free SLTFO materials with higher permittivity and lower dielectric loss have possible practical applications.
基金supported by Shandong Provincial Natural Science Foundation (Grant No. Y2008A19)supported by Research Reward for Excellent Young Scientists from Shandong Province(Grant No. 2007BS01020) +1 种基金supported by Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministrysupported by National Natural Science Foundation of China (Grant No. 11071244)
文摘This paper is concerned with the stability and superconvergence analysis of the famous finite-difference time-domain (FDTD) scheme for the 2D Maxwell equations in a lossy medium with a perfectly electric conducting (PEC) boundary condition, employing the energy method. To this end, we first establish some new energy identities for the 2D Maxwell equations in a lossy medium with a PEC boundary condition. Then by making use of these energy identities, it is proved that the FDTD scheme and its time difference scheme are stable in the discrete L2 and H1 norms when the CFL condition is satisfied. It is shown further that the solution to both the FDTD scheme and its time difference scheme is second-order convergent in both space and time in the discrete L2 and H1 norms under a slightly stricter condition than the CFL condition. This means that the solution to the FDTD scheme is superconvergent. Numerical results are also provided to confirm the theoretical analysis.