水分是引起油浸式套管绝缘性能劣化的主要因素之一,将HN介电弛豫模型用于研究套管中不同水分含量对其绝缘介电特性的影响对评估套管受潮状态具有重要意义。制备5组不同水分含量的72.5 k V套管试样,对不同水分含量油纸绝缘试样进行频域...水分是引起油浸式套管绝缘性能劣化的主要因素之一,将HN介电弛豫模型用于研究套管中不同水分含量对其绝缘介电特性的影响对评估套管受潮状态具有重要意义。制备5组不同水分含量的72.5 k V套管试样,对不同水分含量油纸绝缘试样进行频域介电谱测试,采用HN介电弛豫模型拟合介电频谱,并分析水分含量对HN介电弛豫模型参数的影响。结果表明:水分含量对HN介电弛豫模型的弛豫时间常数、弛豫强度和形状参数具有显著的影响;随着水分含量的增大,弛豫时间常数减小,弛豫时间常数与水分含量呈对数线性关系;弛豫强度和形状参数随着水分含量的增加而变大,弛豫强度与水分含量呈指数关系,形状参数与水分含量呈线性关系。展开更多
A generalized response function based on the use of dielectric spectra for dielectric relaxation process is derived. We apply the general response function to the special case in order to examine how special dielectri...A generalized response function based on the use of dielectric spectra for dielectric relaxation process is derived. We apply the general response function to the special case in order to examine how special dielectric relaxation functions developed by other authors for solvent relaxation can be derived based on our formulations. Three typical solvents, water, methanol, and acetonitrile are used to investigate the electronic polarization processes of polar solvents. The solvent electronic polarization process is shown after a linear variation with the external electric field imposed on the solvent. The results show a conclusion that the electronic polarization of the solvents will accompany the electronic transition synchronously, without time lag.展开更多
文摘水分是引起油浸式套管绝缘性能劣化的主要因素之一,将HN介电弛豫模型用于研究套管中不同水分含量对其绝缘介电特性的影响对评估套管受潮状态具有重要意义。制备5组不同水分含量的72.5 k V套管试样,对不同水分含量油纸绝缘试样进行频域介电谱测试,采用HN介电弛豫模型拟合介电频谱,并分析水分含量对HN介电弛豫模型参数的影响。结果表明:水分含量对HN介电弛豫模型的弛豫时间常数、弛豫强度和形状参数具有显著的影响;随着水分含量的增大,弛豫时间常数减小,弛豫时间常数与水分含量呈对数线性关系;弛豫强度和形状参数随着水分含量的增加而变大,弛豫强度与水分含量呈指数关系,形状参数与水分含量呈线性关系。
文摘A generalized response function based on the use of dielectric spectra for dielectric relaxation process is derived. We apply the general response function to the special case in order to examine how special dielectric relaxation functions developed by other authors for solvent relaxation can be derived based on our formulations. Three typical solvents, water, methanol, and acetonitrile are used to investigate the electronic polarization processes of polar solvents. The solvent electronic polarization process is shown after a linear variation with the external electric field imposed on the solvent. The results show a conclusion that the electronic polarization of the solvents will accompany the electronic transition synchronously, without time lag.