A manufacturing method is proposed for carbon based composite double polymer compliant electrode.The stiffness of this compliant electrode is changed by adjusting the mass fraction of carbon black and the ratios betwe...A manufacturing method is proposed for carbon based composite double polymer compliant electrode.The stiffness of this compliant electrode is changed by adjusting the mass fraction of carbon black and the ratios between Ecoflex20 and RT625.Tensile machine is used to test its ductility and hardness.The conductivity is measured through the source table.Finally,it is printed on the dielectric elastomers(DE)film,and the high-voltage amplifier is used for dielectric elastomers actuators(DEAs)dynamics testing.The results show that the compliant electrode has high tensile properties(>200%),low stiffness(<300 kPa)and well conductivity(0.0493 S/cm).It is proved that the DEAs displacement output is up to 1.189 mm by this compliant electrode under dynamic response,which is 1.64 times and 1.32 times of the same type.Moreover,this formula extends the curing time of the original compliant electrode ink.It can provide a reference for the production of compliant electrode and DEAs in the future.展开更多
In order to imitate skin characteristics, a dielectric elastomer (DE) membrane coated with flexible electrodes is applied with high voltage, which can lead to wrinkles and other phenomena. To develop soft-actuated air...In order to imitate skin characteristics, a dielectric elastomer (DE) membrane coated with flexible electrodes is applied with high voltage, which can lead to wrinkles and other phenomena. To develop soft-actuated air vehicles and other equipment, lightweight gas is pumped into a DE spherical shell to generate controllable flight movements. According to experimental phenomena and data, the calculation models of phase transitions on circular DE films are built. Meanwhile, the deformation characteristics of different DE (acrylic polymer and rubber) spherical actuators combined with helium are compared. The peak pressure inside a rubber balloon is greater than that of a VHB (acrylic polymer) balloon shell, but the limit stretch of rubber is much smaller. By taking advantages of this phenomenon, large deformations of a VHB spherical shell can be realized at an actuated state. Moreover, multi-layer spherical DE shells can achieve larger voltage-induced volume change than monolayer ones. The research indicates that pre-stretching is one of the key factors to induce phase transitions between flat, wrinkled and bulging regions on circular DE films, and the internal pressure determines the electromechanical performance of balloon actuators.展开更多
A series of isometric,radially expanding tubular units,made of dielectric elastomer with compliant electrodes,constitute a soft linear peristaltic pump with distributed actuation for transport of incompressible fluids...A series of isometric,radially expanding tubular units,made of dielectric elastomer with compliant electrodes,constitute a soft linear peristaltic pump with distributed actuation for transport of incompressible fluids.Based on the Gent strain energy model,this paper theoretically analyzes the homogeneous large deformation of the peristaltic unit.We discuss the effects of axial prestretch on the actuation of the actuator.We then predict the maximum actuation strain of this actuator which is limited by dielectric strength of the polymer.The results presented here extend the previous study based on linear elasticity,and can predict the electromechanical behaviors of the novel actuator at large deformations.展开更多
When subjected to voltage,the dielectric elastomer membrane reduces its thickness and expands its area under the resulting compressive force.This characteristic enables the dielectric elastomer actuators of different ...When subjected to voltage,the dielectric elastomer membrane reduces its thickness and expands its area under the resulting compressive force.This characteristic enables the dielectric elastomer actuators of different structures to be designed and fabricated.By employing the thermodynamic theory and research method proposed by Suo et al.,an equilibrium equation of folded dielectric elastomer actuator with two generalized coordinates is established.The governing equations of failure models involving electromechanical instability,zero electric field,electrical breakdown,loss of tension,and rupture by stretch are also derived.The allowable areas of folded dielectric elastomer actuators are described.These results could provide a powerful guidance to the design and performance evaluation of the dielectric elastomer actuators.展开更多
基金Supported by the National Natural Science Foundation for Young Scientists of China(61903344)the National Natural Science Foundation of China(61733006)。
基金Science and Technology Talent Project of Xi’an Science and Technology Bureau,Shaanxi Province(No.2020KJRC0049)。
文摘A manufacturing method is proposed for carbon based composite double polymer compliant electrode.The stiffness of this compliant electrode is changed by adjusting the mass fraction of carbon black and the ratios between Ecoflex20 and RT625.Tensile machine is used to test its ductility and hardness.The conductivity is measured through the source table.Finally,it is printed on the dielectric elastomers(DE)film,and the high-voltage amplifier is used for dielectric elastomers actuators(DEAs)dynamics testing.The results show that the compliant electrode has high tensile properties(>200%),low stiffness(<300 kPa)and well conductivity(0.0493 S/cm).It is proved that the DEAs displacement output is up to 1.189 mm by this compliant electrode under dynamic response,which is 1.64 times and 1.32 times of the same type.Moreover,this formula extends the curing time of the original compliant electrode ink.It can provide a reference for the production of compliant electrode and DEAs in the future.
基金The National Natural Science Foundation of China(No.51775108)
文摘In order to imitate skin characteristics, a dielectric elastomer (DE) membrane coated with flexible electrodes is applied with high voltage, which can lead to wrinkles and other phenomena. To develop soft-actuated air vehicles and other equipment, lightweight gas is pumped into a DE spherical shell to generate controllable flight movements. According to experimental phenomena and data, the calculation models of phase transitions on circular DE films are built. Meanwhile, the deformation characteristics of different DE (acrylic polymer and rubber) spherical actuators combined with helium are compared. The peak pressure inside a rubber balloon is greater than that of a VHB (acrylic polymer) balloon shell, but the limit stretch of rubber is much smaller. By taking advantages of this phenomenon, large deformations of a VHB spherical shell can be realized at an actuated state. Moreover, multi-layer spherical DE shells can achieve larger voltage-induced volume change than monolayer ones. The research indicates that pre-stretching is one of the key factors to induce phase transitions between flat, wrinkled and bulging regions on circular DE films, and the internal pressure determines the electromechanical performance of balloon actuators.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11102149,10872157,11072185,and 10972174)
文摘A series of isometric,radially expanding tubular units,made of dielectric elastomer with compliant electrodes,constitute a soft linear peristaltic pump with distributed actuation for transport of incompressible fluids.Based on the Gent strain energy model,this paper theoretically analyzes the homogeneous large deformation of the peristaltic unit.We discuss the effects of axial prestretch on the actuation of the actuator.We then predict the maximum actuation strain of this actuator which is limited by dielectric strength of the polymer.The results presented here extend the previous study based on linear elasticity,and can predict the electromechanical behaviors of the novel actuator at large deformations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11225211,11272106,11102052)China Postdoctoral Science Foundation(Grant No.2012M520032)+1 种基金Heilongjiang Postdoctoral Fund(Grant No.LBH-Z12091)the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.2013030)
文摘When subjected to voltage,the dielectric elastomer membrane reduces its thickness and expands its area under the resulting compressive force.This characteristic enables the dielectric elastomer actuators of different structures to be designed and fabricated.By employing the thermodynamic theory and research method proposed by Suo et al.,an equilibrium equation of folded dielectric elastomer actuator with two generalized coordinates is established.The governing equations of failure models involving electromechanical instability,zero electric field,electrical breakdown,loss of tension,and rupture by stretch are also derived.The allowable areas of folded dielectric elastomer actuators are described.These results could provide a powerful guidance to the design and performance evaluation of the dielectric elastomer actuators.