以固定于平整硅基底上的聚氧乙烯单晶为模型体系,利用原子力显微镜的成像功能定位单晶后,用探针压穿聚氧乙烯单晶层,测量单晶层的介观力学性质.结果显示,原子力显微镜探针压穿单晶层所需要的力值为50~200 n N,随着探针曲率半径、下压速...以固定于平整硅基底上的聚氧乙烯单晶为模型体系,利用原子力显微镜的成像功能定位单晶后,用探针压穿聚氧乙烯单晶层,测量单晶层的介观力学性质.结果显示,原子力显微镜探针压穿单晶层所需要的力值为50~200 n N,随着探针曲率半径、下压速率和聚氧乙烯与溶剂界面能的增加,压穿单晶层所需要的力值也随之增加.结合分子模型证明在压穿过程中聚氧乙烯分子被原子力显微镜探针挤压到单晶外部.另外,发现在相同的下压速率和拉伸速率下,将相同数目的聚氧乙烯分子链挤压出晶体的能量与拉伸出晶体所需要的能量接近,继而从能量角度建立了聚氧乙烯晶体微观力学性质与介观力学性质的联系.展开更多
The mesoscopic structures of β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)- based PBXs (polymer bonded explosives) at room temperature were investigated using dissipative particle dynamics method. The ...The mesoscopic structures of β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)- based PBXs (polymer bonded explosives) at room temperature were investigated using dissipative particle dynamics method. The parameters and repulsive parameters of dif- ferent polymers and β-HMX, the mesoscopic structures of β-HMX-based polymer-bonded explosives at different temperatures have been studied. The results showed that the compat-ibility between β-HMX and vinylidenedifluoride (VDF),β-HMX and chlorotrifluoroethylene (CTFE), VDF and CTFE increased with increasing temperature. The temperature and mo-lar ratio of the polymers played an important role in wrapped process. And there exists the optimum temperature and molar ratio.展开更多
Using the path integral method we derive quantum wave function and quantum fluctuations of charge andcurrent in the mesoscopic RLC circuit. We find that the quantum fluctuation of charge decreases with time, oppositel...Using the path integral method we derive quantum wave function and quantum fluctuations of charge andcurrent in the mesoscopic RLC circuit. We find that the quantum fluctuation of charge decreases with time, oppositely,the quantum fluctuation of current increases with time monotonously. Therefore there is a squeezing effect in the circuit.If some more charge devices are used in the mesoscopic-damped circuit, the quantum noise can be reduced. We also findthat uncertainty relation of charge and current periodically varies with the period π/2 in the under-damped case.展开更多
Conventional model tests and centrifuge tests are frequently used to investigate seepage erosion. However, the centrifugal test method may not be efficient according to the results of hydraulic conductivity tests and ...Conventional model tests and centrifuge tests are frequently used to investigate seepage erosion. However, the centrifugal test method may not be efficient according to the results of hydraulic conductivity tests and piping erosion tests. The reason why seepage deformation in model tests may deviate from similarity was first discussed in this work. Then, the similarity criterion for seepage deformation in porous media was improved based on the extended Darcy-Brinkman-Forchheimer equation. Finally, the coupled particle flow code–computational fluid dynamics(PFC-CFD) model at the mesoscopic level was proposed to verify the derived similarity criterion. The proposed model maximizes its potential to simulate seepage erosion via the discrete element method and satisfy the similarity criterion by adjusting particle size. The numerical simulations achieved identical results with the prototype, thus indicating that the PFC-CFD model that satisfies the improved similarity criterion can accurately reproduce the processes of seepage erosion at the mesoscopic level.展开更多
This paper is devoted to the derivation of macroscopic fluid dynamics from the Boltzmann mesoscopic dynamics of a binary mixture of hard-sphere gas particles.Specifically the hydrodynamics limit is performed by employ...This paper is devoted to the derivation of macroscopic fluid dynamics from the Boltzmann mesoscopic dynamics of a binary mixture of hard-sphere gas particles.Specifically the hydrodynamics limit is performed by employing different time and space scalings.The paper shows that,depending on the magnitude of the parameters which define the scaling,the macroscopic quantities(number density,mean velocity and local temperature)are solutions of the acoustic equation,the linear incompressible Euler equation and the incompressible Navier–Stokes equation.The derivation is formally tackled by the recent moment method proposed by[C.Bardos,et al.,J.Stat.Phys.63(1991)323]and the results generalize the analysis performed in[C.Bianca,et al.,Commun.Nonlinear Sci.Numer.Simulat.29(2015)240].展开更多
文摘以固定于平整硅基底上的聚氧乙烯单晶为模型体系,利用原子力显微镜的成像功能定位单晶后,用探针压穿聚氧乙烯单晶层,测量单晶层的介观力学性质.结果显示,原子力显微镜探针压穿单晶层所需要的力值为50~200 n N,随着探针曲率半径、下压速率和聚氧乙烯与溶剂界面能的增加,压穿单晶层所需要的力值也随之增加.结合分子模型证明在压穿过程中聚氧乙烯分子被原子力显微镜探针挤压到单晶外部.另外,发现在相同的下压速率和拉伸速率下,将相同数目的聚氧乙烯分子链挤压出晶体的能量与拉伸出晶体所需要的能量接近,继而从能量角度建立了聚氧乙烯晶体微观力学性质与介观力学性质的联系.
文摘The mesoscopic structures of β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine)- based PBXs (polymer bonded explosives) at room temperature were investigated using dissipative particle dynamics method. The parameters and repulsive parameters of dif- ferent polymers and β-HMX, the mesoscopic structures of β-HMX-based polymer-bonded explosives at different temperatures have been studied. The results showed that the compat-ibility between β-HMX and vinylidenedifluoride (VDF),β-HMX and chlorotrifluoroethylene (CTFE), VDF and CTFE increased with increasing temperature. The temperature and mo-lar ratio of the polymers played an important role in wrapped process. And there exists the optimum temperature and molar ratio.
文摘Using the path integral method we derive quantum wave function and quantum fluctuations of charge andcurrent in the mesoscopic RLC circuit. We find that the quantum fluctuation of charge decreases with time, oppositely,the quantum fluctuation of current increases with time monotonously. Therefore there is a squeezing effect in the circuit.If some more charge devices are used in the mesoscopic-damped circuit, the quantum noise can be reduced. We also findthat uncertainty relation of charge and current periodically varies with the period π/2 in the under-damped case.
基金Project(51309086)supported by the National Natural Science Foundation of ChinaProject(20110094120002)supported by the Ministry Education Foundation of ChinaProjects(2014B04914,2011B07214)supported by the Fundamental Research Funds for the Central Universities,China
文摘Conventional model tests and centrifuge tests are frequently used to investigate seepage erosion. However, the centrifugal test method may not be efficient according to the results of hydraulic conductivity tests and piping erosion tests. The reason why seepage deformation in model tests may deviate from similarity was first discussed in this work. Then, the similarity criterion for seepage deformation in porous media was improved based on the extended Darcy-Brinkman-Forchheimer equation. Finally, the coupled particle flow code–computational fluid dynamics(PFC-CFD) model at the mesoscopic level was proposed to verify the derived similarity criterion. The proposed model maximizes its potential to simulate seepage erosion via the discrete element method and satisfy the similarity criterion by adjusting particle size. The numerical simulations achieved identical results with the prototype, thus indicating that the PFC-CFD model that satisfies the improved similarity criterion can accurately reproduce the processes of seepage erosion at the mesoscopic level.
文摘This paper is devoted to the derivation of macroscopic fluid dynamics from the Boltzmann mesoscopic dynamics of a binary mixture of hard-sphere gas particles.Specifically the hydrodynamics limit is performed by employing different time and space scalings.The paper shows that,depending on the magnitude of the parameters which define the scaling,the macroscopic quantities(number density,mean velocity and local temperature)are solutions of the acoustic equation,the linear incompressible Euler equation and the incompressible Navier–Stokes equation.The derivation is formally tackled by the recent moment method proposed by[C.Bardos,et al.,J.Stat.Phys.63(1991)323]and the results generalize the analysis performed in[C.Bianca,et al.,Commun.Nonlinear Sci.Numer.Simulat.29(2015)240].