期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基岩地震动的一个相干函数模型——倾滑断层情形 被引量:13
1
作者 丁海平 刘启方 +1 位作者 金星 袁一凡 《地震工程与工程振动》 CSCD 北大核心 2003年第2期8-11,共4页
本文研究了基岩随机地震动的空间变化规律,考虑了震源破裂速度、子源个数、震源深度和介质传播速度等因素的影响。对应于每个样本,用数值模拟方法计算了采用震源位错模型的弹性半空间近场地震动场,最后通过统计方法给出了一个倾滑断层... 本文研究了基岩随机地震动的空间变化规律,考虑了震源破裂速度、子源个数、震源深度和介质传播速度等因素的影响。对应于每个样本,用数值模拟方法计算了采用震源位错模型的弹性半空间近场地震动场,最后通过统计方法给出了一个倾滑断层情形下的近场基岩地震动的相干函数模型。这一方法可以补充常用的统计方法因观测资料有限而导致的欠缺。 展开更多
关键词 基岩 地震动 相干函数模型 震源破裂速度 震源深度 介质传播速度 数值模拟 统计方法 断层
下载PDF
浅层地下震动定位方法研究
2
作者 潘烨炀 《山西电子技术》 2014年第3期87-89,共3页
提出一种利用改进遗传算法解决浅层地下震动定位的问题,模拟时差定位模型进行震源坐标的求解,由于模型的复杂性,采用了浮点数编码的遗传算法,引入一种自适应的交叉算子和变异算子。实验结果表明,在保证种群数量的情况下,该算法性能大大... 提出一种利用改进遗传算法解决浅层地下震动定位的问题,模拟时差定位模型进行震源坐标的求解,由于模型的复杂性,采用了浮点数编码的遗传算法,引入一种自适应的交叉算子和变异算子。实验结果表明,在保证种群数量的情况下,该算法性能大大优于一般遗传算法,能快速找到逼近全局最优的解,并且精度更高。 展开更多
关键词 改进遗传算法 时差定位 三维定位 介质传播速度
下载PDF
Cellular Automaton Simulations for Target Waves in Excitable Media 被引量:1
3
作者 张立升 邓敏艺 +2 位作者 孔令江 刘慕仁 唐国宁 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第1期171-174,共4页
Using the Greenberg-Hasting cellular automata model, we study the properties of target waves in excitable media under the no-flux boundary conditions. For the system has only one excited state, the computer simulation... Using the Greenberg-Hasting cellular automata model, we study the properties of target waves in excitable media under the no-flux boundary conditions. For the system has only one excited state, the computer simulation and analysis lead to the conclusions that, the number of refractory states does not influence the wave-front speed; the wave- front speed decreases as the excitation threshold increases and increases as the neighbor radius increases; the period of target waves is equal to the number of cell states; the excitation condition for target waves is that the wave-front speed must be bigger than half of the neighbor radius. 展开更多
关键词 cellular automata excitable media target wave
下载PDF
Calculation of seismic transmission speed of HTI medium
4
作者 WANG Hongwei FAN Meining 《Global Geology》 2013年第4期221-225,共5页
During the seismic wave propagation process,as for the anisotropic lower medium,the speed is a function of the propagating direction.This article focuses on solving the problem how to get the transmittance angle and s... During the seismic wave propagation process,as for the anisotropic lower medium,the speed is a function of the propagating direction.This article focuses on solving the problem how to get the transmittance angle and speed,knowing the upper seismic wave propagation velocity and the angle of incidence conditions.The main theories used Snell law,Christoffel equation and speed characteristics.Taking the HTI medium as an example,the authors give the detailed solving process and draw the space velocity characteristic curve. 展开更多
关键词 EDA medium Snell law Christoffel equation speed characteristics
下载PDF
Velocity field of wave-induced local fluid flow in double-porosity media 被引量:4
5
作者 BA Jing ZHANG Lin +1 位作者 SUN WeiTao HAO ZhaoBing 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2014年第6期1020-1030,共11页
Under the excitation of elastic waves,local fluid flow in a complex porous medium is a major cause for wave dispersion and attenuation.When the local fluid flow process is simulated with wave propagation equations in ... Under the excitation of elastic waves,local fluid flow in a complex porous medium is a major cause for wave dispersion and attenuation.When the local fluid flow process is simulated with wave propagation equations in the double-porosity medium,two porous skeletons are usually assumed,namely,host and inclusions.Of them,the volume ratio of inclusion skeletons is low.All previous studies have ignored the consideration of local fluid flow velocity field in inclusions,and therefore they can not completely describe the physical process of local flow oscillation and should not be applied to the situation where the fluid kinetic energy in inclusions cannot be neglected.In this paper,we analyze the local fluid flow velocity fields inside and outside the inclusion,rewrite the kinetic energy function and dissipation function based on the double-porosity medium model containing spherical inclusions,and derive the reformulated Biot-Rayleigh(BR)equations of elastic wave propagation based on Hamilton’s principle.We present simulation examples with different rock and fluid types.Comparisons between BR equations and reformulated BR equations show that there are significant differences in wave response characteristics.Finally,we compare the reformulated BR equations with the previous theories and experimental data,and the results show that the theoretical results of this paper are correct and effective. 展开更多
关键词 double-porosity medium elastic wave propagation local fluid flow velocity dispersion Biot-Rayleigh equations petro-physical experiment
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部