The inhibition effect of electrochemical noise, EIS and surface analysis to evaluate N'-bis (2-pyridylmethylidene)- 1,2-diiminoethane (BPIE) Schiff base against AZ91D alloy corrosion in 0.01 mol/L HCl was investig...The inhibition effect of electrochemical noise, EIS and surface analysis to evaluate N'-bis (2-pyridylmethylidene)- 1,2-diiminoethane (BPIE) Schiff base against AZ91D alloy corrosion in 0.01 mol/L HCl was investigated by different electrochemical methods. Potentiodynamic polarization curves revealed that the BPIE acts as a mixed-type corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) measurements confirmed the corrosion inhibition effect of the BPIE. As the inhibitor concentration increased, the charge transfer resistance increased and the double layer capacitance decreased due to more inhibitor adsorption on the surface. The results obtained by analysis of electrochemical noise (EN) data in time and frequency domains are in good agreement with EIS and polarization results. Moreover, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were used to investigate the corrosion inhibition of the BPIE. SEM images showed that the corrosion damage of the alloy surface reduced in the presence of BPIE. The intensity of the XRD peaks corresponding to magnesium-rich α phase increased in the presence of BPIE, indicating lower corrosion of alloy sample. Also, EDX analysis approved the corrosion inhibition performance of the BPIE. The studied Schiff base compound acts by physical adsorption on the alloy surface and its adsorption obeys the Langmuir isotherm.展开更多
Based on Pomeron exchange model, elastic production of vector meson in electro-proton interaction is investigated with both linear and non-linear Pomeron trajectory. A numerical calculation for J/psi production is per...Based on Pomeron exchange model, elastic production of vector meson in electro-proton interaction is investigated with both linear and non-linear Pomeron trajectory. A numerical calculation for J/psi production is performed. The effect of the energy scale so and photon virtuality Q(2) on differential cross section are also predicted. A good agreement with experimental data is obtained. Our conclusions are that the Pomeron exchange model is a successful description of J/psi electro-production, the dependence of the differential cross sections on Q2 is negligible, the linear trajectory is a good approximation to non-linearity of the Pomeron trajectory, and the value of the energy scale parameter so is dependent on the momentum transfer, namely its effect is moderate at low momentum transfer but it causes no difference at high momentum transfer vertical bar t vertical bar >= 1.25 GeV2.展开更多
The disturbance due to mechanical and thermal sources in saturated porous media with incompressible fluid for two-dimensional axi-symmetric problem is investigated.The Laplace and Hankel transforms techniques are used...The disturbance due to mechanical and thermal sources in saturated porous media with incompressible fluid for two-dimensional axi-symmetric problem is investigated.The Laplace and Hankel transforms techniques are used to investigate the problem.The concentrated source and source over circular region have been taken to show the utility of the approach.The transformed components of displacement,stress and pore pressure are obtained.Numerical inversion techniques are used to obtain the resulting quantities in the physical domain and the effect of porosity is shown on the resulting quantities.All the field quantities are found to be sensitive towards the porosity parameters.It is observed that porosity parameters have both increasing and decreasing effect on the numerical values of the physical quantities.Also the values of the physical quantities are affected by the different boundaries.A special case of interest is also deduced.展开更多
The remote interaction of polymethacrylic acid hydrogel with a poly-2-methyl-5-vinylpyridine hydrogel was studied. The aim of work was to study the dependence of the swelling coefficient, the conductivity and the pH o...The remote interaction of polymethacrylic acid hydrogel with a poly-2-methyl-5-vinylpyridine hydrogel was studied. The aim of work was to study the dependence of the swelling coefficient, the conductivity and the pH of the water solutions of intergel system at different mass ratios from time were studied. The goal was achieved by using following methods: pH-metry, conductometry and gravimetry.展开更多
Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contrac...Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contraction. A prediction method of ground surface displacement was developed. The reliability of the presented method was validated through a comparison between theoretical results and results from engineering practice. Results show that the present method is effective. The effect of parameters on uplift displacement was illustrated under different grouting conditions. Through analysis, it can be known that the ground surface uplift is mainly caused by osmosis of slurry and the primary influence angle of stratum β determines the influence range of surface uplift. Besides, the results show that ground surface uplift displacement decreases notably with increasing depth of the grouting cavity but it increases with increasing diffusion radius of grout and increasing grouting pressure.展开更多
文摘The inhibition effect of electrochemical noise, EIS and surface analysis to evaluate N'-bis (2-pyridylmethylidene)- 1,2-diiminoethane (BPIE) Schiff base against AZ91D alloy corrosion in 0.01 mol/L HCl was investigated by different electrochemical methods. Potentiodynamic polarization curves revealed that the BPIE acts as a mixed-type corrosion inhibitor. Electrochemical impedance spectroscopy (EIS) measurements confirmed the corrosion inhibition effect of the BPIE. As the inhibitor concentration increased, the charge transfer resistance increased and the double layer capacitance decreased due to more inhibitor adsorption on the surface. The results obtained by analysis of electrochemical noise (EN) data in time and frequency domains are in good agreement with EIS and polarization results. Moreover, scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) were used to investigate the corrosion inhibition of the BPIE. SEM images showed that the corrosion damage of the alloy surface reduced in the presence of BPIE. The intensity of the XRD peaks corresponding to magnesium-rich α phase increased in the presence of BPIE, indicating lower corrosion of alloy sample. Also, EDX analysis approved the corrosion inhibition performance of the BPIE. The studied Schiff base compound acts by physical adsorption on the alloy surface and its adsorption obeys the Langmuir isotherm.
文摘Based on Pomeron exchange model, elastic production of vector meson in electro-proton interaction is investigated with both linear and non-linear Pomeron trajectory. A numerical calculation for J/psi production is performed. The effect of the energy scale so and photon virtuality Q(2) on differential cross section are also predicted. A good agreement with experimental data is obtained. Our conclusions are that the Pomeron exchange model is a successful description of J/psi electro-production, the dependence of the differential cross sections on Q2 is negligible, the linear trajectory is a good approximation to non-linearity of the Pomeron trajectory, and the value of the energy scale parameter so is dependent on the momentum transfer, namely its effect is moderate at low momentum transfer but it causes no difference at high momentum transfer vertical bar t vertical bar >= 1.25 GeV2.
文摘The disturbance due to mechanical and thermal sources in saturated porous media with incompressible fluid for two-dimensional axi-symmetric problem is investigated.The Laplace and Hankel transforms techniques are used to investigate the problem.The concentrated source and source over circular region have been taken to show the utility of the approach.The transformed components of displacement,stress and pore pressure are obtained.Numerical inversion techniques are used to obtain the resulting quantities in the physical domain and the effect of porosity is shown on the resulting quantities.All the field quantities are found to be sensitive towards the porosity parameters.It is observed that porosity parameters have both increasing and decreasing effect on the numerical values of the physical quantities.Also the values of the physical quantities are affected by the different boundaries.A special case of interest is also deduced.
文摘The remote interaction of polymethacrylic acid hydrogel with a poly-2-methyl-5-vinylpyridine hydrogel was studied. The aim of work was to study the dependence of the swelling coefficient, the conductivity and the pH of the water solutions of intergel system at different mass ratios from time were studied. The goal was achieved by using following methods: pH-metry, conductometry and gravimetry.
基金Project(51478478) supported by the National Natural Science Foundation of ChinaProject(IRT1296) supported by the Program for Changjiang Scholars and Innovative Research Team(PCSIRT) in University,China
文摘Ground surface displacement caused by grouting was calculated with stochastic medium theory. Ground surface displacement was assumed to be caused by the cavity expansion of grouting, slurry seepage, and slurry contraction. A prediction method of ground surface displacement was developed. The reliability of the presented method was validated through a comparison between theoretical results and results from engineering practice. Results show that the present method is effective. The effect of parameters on uplift displacement was illustrated under different grouting conditions. Through analysis, it can be known that the ground surface uplift is mainly caused by osmosis of slurry and the primary influence angle of stratum β determines the influence range of surface uplift. Besides, the results show that ground surface uplift displacement decreases notably with increasing depth of the grouting cavity but it increases with increasing diffusion radius of grout and increasing grouting pressure.