We present a method to unify the calculation of Green's functions for an electromagnetic(EM) transmitting source embedded in a homogeneous stratified medium.A virtual interface parallel to layer interfaces is intro...We present a method to unify the calculation of Green's functions for an electromagnetic(EM) transmitting source embedded in a homogeneous stratified medium.A virtual interface parallel to layer interfaces is introduced through the source location.The potentials for Green's function are derived by decomposing the partial wave solutions to Helmholtz's equations into upward and downward within boundaries.The amplitudes of the potentials in each stratum are obtained recursively from the initial amplitudes at the source level.The initial amplitudes are derived by coupling with the transmitting sources and following the discontinuity of the tangential electric and magnetic fields at the source interface.Only the initial terms are related to the transmitting sources and thus need to be modified for different transmitters,whereas the kernel connected with the stratified media stays unchanged.Hence,the present method can be easily applied to EM transmitting sources with little modification.The application of the proposed method to the marine controlled-source electromagnetic method(MCSEM) demonstrates its simplicity and flexibility.展开更多
The photonic band gap structure of 1D photonic crystal with a negative index medium defect layer is studied by using the transfer matrix method. Investigations show that the introdufion of negative index medium defect...The photonic band gap structure of 1D photonic crystal with a negative index medium defect layer is studied by using the transfer matrix method. Investigations show that the introdufion of negative index medium defect layer and the increase of the negative index value will result in an extension of the band gap. Moreover, by increasing the negative index, the width of defect layer and the numbers of period photonic crystal, the width of defect modes will be narrowed, which is advantaged to obtain optical filters with narrow band. Finally, the effects of absorption on the properties of band gap and on defect modes have been discussed.展开更多
Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interest...Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interesting frequencies can be selected; and it is more suitable for wave propagation in viscoelastic media. The only obstacle to using the method is the requirement of huge computer storage. We extend the compressed format for storing the coefficient matrix. It can reduce the required computer storage dramatically. We get the optimal coefficients by least-squares method to suppress the numerical dispersion and adopt the perfectly matched layer (PML) boundary conditions to eliminate the artificial boundary reflections. Using larger grid intervals decreases computer storage requirements and provides high computational efficiency. Numerical experiments demonstrate that these means are economic and effective, providing a good basis for elastic wave imaging and inversion.展开更多
Proceeding from wave equations, the paper strictly deduced the dispersion relation equation of Love-type channel waves in Standard Linear Solid model. The e quation is a complex one with its real part signifying the d...Proceeding from wave equations, the paper strictly deduced the dispersion relation equation of Love-type channel waves in Standard Linear Solid model. The e quation is a complex one with its real part signifying the dispersion characteristics of the channel wave while the imaginary part, the attenuation characteristics. In calcu lating the attenuation value, the author has set up a mathematical model of a horizon tal symmetric sequence (a three layer sequence of rock-coal-rock), given out some physical parametersl and adopted the dichotomy method that is more of ten used in root resolving of an equatlon. The calculation indicates that the influence of non-elas tic absorption on the attenuation of the propagation of channel wave varies with the frequency. In the frequency band of the Airy phase, the attenuation increases steep like, which is unfavorable for the channel wave seismic prospecting. The study of channel wave attenuation has provided a theoretical basis for the compensation of at tenuation.展开更多
In this work we study one problem of mathematical interest for their applications in several topics in Applied Science. We study simultaneous controllability of a pair of systems which model the evolution of sound in ...In this work we study one problem of mathematical interest for their applications in several topics in Applied Science. We study simultaneous controllability of a pair of systems which model the evolution of sound in a compressible flow considered as a transmission problem. We show the well posed of the problem. Furthermore provided appropriate conditions in the geometry of the domain are valid and suitable assumptions on the fluid, is possible to conduce the pair of systems to the equilibrium in a simultaneous way using only one control.展开更多
This paper is organized as follows. After a discussion of the differential equations for wave propagation in the horizontally stratified medium and of the initial and boundary conditions, the displacements are derived...This paper is organized as follows. After a discussion of the differential equations for wave propagation in the horizontally stratified medium and of the initial and boundary conditions, the displacements are derived on the free surface of the layered medium for plane waves when a point source is located on the s-th imaginary boundary at the depth -s (physical parameters of the layers s and (s + 1) are put to be identical). Then, the source will be represented as a single force of arbitrary orientation and a general moment tensor point source. Further, "a primary field" for a point source will be introduced. Matrix method for the solution of the direct seismic problem is considered based on the matrix method of Thomson-Haskell and its modifications.展开更多
A numerical study has been carried out to investigate heat transfer by free convection under the effect of MHD (magnetohydrodynamic) for steady state three-dimensional laminar flow in horizontal and vertical cylindr...A numerical study has been carried out to investigate heat transfer by free convection under the effect of MHD (magnetohydrodynamic) for steady state three-dimensional laminar flow in horizontal and vertical cylindrical annulus filled with saturated porous media (sand silica) with fins attached to the inner cylinder. A single electric coil placed around the inner cylinder to generate a magnetic field. The governing equations which used are continuity, momentum (using Darcy's law) and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using Fortran 90 program. The parameters affected on the system are Rayleigh number ranging within (102 ~ Ra* 〈 104), and MHD (Mn) (0 〈_ Mn 〈_ 100) and radius ratio Rr (0.225, 0.338 and 0.435). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that heat transfer decrease with the increase of magnetohydrodynamic. It was found that the average Nusselt number increase with Ra* and decrease with H~ Mn and Rr. A correlation for the average Nusselt number in terms of Ra* and Mn, has been developed for the inner cylinder.展开更多
HfxAl(1-x)O film grown by atomic layer deposition(ALD) on n-type 4H-SiC(0001) epitaxial layer has been studied.Measurements show that it has relatively high breakdown electric field of 16.4 MV/cm,high dielectric const...HfxAl(1-x)O film grown by atomic layer deposition(ALD) on n-type 4H-SiC(0001) epitaxial layer has been studied.Measurements show that it has relatively high breakdown electric field of 16.4 MV/cm,high dielectric constant of 16.3 and low gate leakage current of 2.47×10-5 A/cm2 at E=5 MV/cm,which makes ALD HfxAl(1-x)O a great potential candidate gate dielectric for 4H-SiC MIS based transistors.展开更多
The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms o...The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms or Sommerfeld-type integrals are used to recover all components of the dyadic Green's function in real space. The Hankel transforms are performed with the adaptive generalized Gaussian quadrature points and window functions to minimize the computational cost. Subsequently, a fast integral equation solver with O(N2zNxNy log(NzNy)) in layered media is developed by rewriting the layered media integral operator in terms of Hankel transforms and using the new fast multipole method for the n-th order Bessel function in 2-D. Computational cost and parallel efficiency of the new algorithm are presented.展开更多
In the paper"A numerical investigation of the acoustic mode waves in a deviated borehole penetrating a transversely isotropic formation"by Liu et al.[1]numerical experiments are reported for a dipole sonic l...In the paper"A numerical investigation of the acoustic mode waves in a deviated borehole penetrating a transversely isotropic formation"by Liu et al.[1]numerical experiments are reported for a dipole sonic logging scenario with a deviated borehole penetrating a VTI anisotropic medium.In such a situation it is important to clearly define the meaning of group and phase velocities as this has led to much confusion in the literature as discussed by Miller,Horne and Walsh[2].展开更多
基金supported by CNSF(Granted No.40874050)Chinese High Technology Project(Granted No.2011YQ05006010)
文摘We present a method to unify the calculation of Green's functions for an electromagnetic(EM) transmitting source embedded in a homogeneous stratified medium.A virtual interface parallel to layer interfaces is introduced through the source location.The potentials for Green's function are derived by decomposing the partial wave solutions to Helmholtz's equations into upward and downward within boundaries.The amplitudes of the potentials in each stratum are obtained recursively from the initial amplitudes at the source level.The initial amplitudes are derived by coupling with the transmitting sources and following the discontinuity of the tangential electric and magnetic fields at the source interface.Only the initial terms are related to the transmitting sources and thus need to be modified for different transmitters,whereas the kernel connected with the stratified media stays unchanged.Hence,the present method can be easily applied to EM transmitting sources with little modification.The application of the proposed method to the marine controlled-source electromagnetic method(MCSEM) demonstrates its simplicity and flexibility.
基金Thes work is supported by the National Natural Science Founda-tion of China (Grant No. 10576012 and 60538010)the programof the Ministry of Education of China for New Century ExcellentTalents in University, and the Specialized Research Fund for theDoctoral Program of Higher Education of China (Grant No.20040532005).
文摘The photonic band gap structure of 1D photonic crystal with a negative index medium defect layer is studied by using the transfer matrix method. Investigations show that the introdufion of negative index medium defect layer and the increase of the negative index value will result in an extension of the band gap. Moreover, by increasing the negative index, the width of defect layer and the numbers of period photonic crystal, the width of defect modes will be narrowed, which is advantaged to obtain optical filters with narrow band. Finally, the effects of absorption on the properties of band gap and on defect modes have been discussed.
基金supported by the 863 Program (Grant no.2006AA09Z323)the 973 Program (Grant No.2006CB202402)
文摘Numerical simulation in the frequency-space domain has inherent advantages, such as: it is possible to simulate wave propagation from multiple sources simultaneously; there are no cumulative errors; only the interesting frequencies can be selected; and it is more suitable for wave propagation in viscoelastic media. The only obstacle to using the method is the requirement of huge computer storage. We extend the compressed format for storing the coefficient matrix. It can reduce the required computer storage dramatically. We get the optimal coefficients by least-squares method to suppress the numerical dispersion and adopt the perfectly matched layer (PML) boundary conditions to eliminate the artificial boundary reflections. Using larger grid intervals decreases computer storage requirements and provides high computational efficiency. Numerical experiments demonstrate that these means are economic and effective, providing a good basis for elastic wave imaging and inversion.
文摘Proceeding from wave equations, the paper strictly deduced the dispersion relation equation of Love-type channel waves in Standard Linear Solid model. The e quation is a complex one with its real part signifying the dispersion characteristics of the channel wave while the imaginary part, the attenuation characteristics. In calcu lating the attenuation value, the author has set up a mathematical model of a horizon tal symmetric sequence (a three layer sequence of rock-coal-rock), given out some physical parametersl and adopted the dichotomy method that is more of ten used in root resolving of an equatlon. The calculation indicates that the influence of non-elas tic absorption on the attenuation of the propagation of channel wave varies with the frequency. In the frequency band of the Airy phase, the attenuation increases steep like, which is unfavorable for the channel wave seismic prospecting. The study of channel wave attenuation has provided a theoretical basis for the compensation of at tenuation.
文摘In this work we study one problem of mathematical interest for their applications in several topics in Applied Science. We study simultaneous controllability of a pair of systems which model the evolution of sound in a compressible flow considered as a transmission problem. We show the well posed of the problem. Furthermore provided appropriate conditions in the geometry of the domain are valid and suitable assumptions on the fluid, is possible to conduce the pair of systems to the equilibrium in a simultaneous way using only one control.
文摘This paper is organized as follows. After a discussion of the differential equations for wave propagation in the horizontally stratified medium and of the initial and boundary conditions, the displacements are derived on the free surface of the layered medium for plane waves when a point source is located on the s-th imaginary boundary at the depth -s (physical parameters of the layers s and (s + 1) are put to be identical). Then, the source will be represented as a single force of arbitrary orientation and a general moment tensor point source. Further, "a primary field" for a point source will be introduced. Matrix method for the solution of the direct seismic problem is considered based on the matrix method of Thomson-Haskell and its modifications.
文摘A numerical study has been carried out to investigate heat transfer by free convection under the effect of MHD (magnetohydrodynamic) for steady state three-dimensional laminar flow in horizontal and vertical cylindrical annulus filled with saturated porous media (sand silica) with fins attached to the inner cylinder. A single electric coil placed around the inner cylinder to generate a magnetic field. The governing equations which used are continuity, momentum (using Darcy's law) and energy equations which are transformed to dimensionless equations. The finite difference approach is used to obtain all the computational results using Fortran 90 program. The parameters affected on the system are Rayleigh number ranging within (102 ~ Ra* 〈 104), and MHD (Mn) (0 〈_ Mn 〈_ 100) and radius ratio Rr (0.225, 0.338 and 0.435). The results obtained are presented graphically in the form of streamline and isotherm contour plots and the results show that heat transfer decrease with the increase of magnetohydrodynamic. It was found that the average Nusselt number increase with Ra* and decrease with H~ Mn and Rr. A correlation for the average Nusselt number in terms of Ra* and Mn, has been developed for the inner cylinder.
基金supported by the National Natural Science Foundation of China (Grant No. 61006008)the National Defense Advance Research Project (Grant No. 513080301)the Key Specific Project in the National Sciences and Technology Program (Grant No. KJ080112501)
文摘HfxAl(1-x)O film grown by atomic layer deposition(ALD) on n-type 4H-SiC(0001) epitaxial layer has been studied.Measurements show that it has relatively high breakdown electric field of 16.4 MV/cm,high dielectric constant of 16.3 and low gate leakage current of 2.47×10-5 A/cm2 at E=5 MV/cm,which makes ALD HfxAl(1-x)O a great potential candidate gate dielectric for 4H-SiC MIS based transistors.
基金supported by the US Army Ofce of Research(Grant No.W911NF11-1-0364)the National Science Foundation of USA(Grant No.DMS-1005441)National Natural Science Foundation of China(Grant No.91230105)
文摘The paper presents a new fast integral equation solver for Maxwell's equations in 3-D layered media. First, the spectral domain dyadic Green's function is derived, and the 0-th and the 1-st order Hankel transforms or Sommerfeld-type integrals are used to recover all components of the dyadic Green's function in real space. The Hankel transforms are performed with the adaptive generalized Gaussian quadrature points and window functions to minimize the computational cost. Subsequently, a fast integral equation solver with O(N2zNxNy log(NzNy)) in layered media is developed by rewriting the layered media integral operator in terms of Hankel transforms and using the new fast multipole method for the n-th order Bessel function in 2-D. Computational cost and parallel efficiency of the new algorithm are presented.
文摘In the paper"A numerical investigation of the acoustic mode waves in a deviated borehole penetrating a transversely isotropic formation"by Liu et al.[1]numerical experiments are reported for a dipole sonic logging scenario with a deviated borehole penetrating a VTI anisotropic medium.In such a situation it is important to clearly define the meaning of group and phase velocities as this has led to much confusion in the literature as discussed by Miller,Horne and Walsh[2].