A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, wher...A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, where valence band mixing is taken into account.By comparing to the experiments, the model is demonstrated to be applicable to both electron and hole tunneling c urrents in CMOS devices.The effect of the dispersion in oxide energy gap on the tunneling current is also studied.This model can be further extended to study th e direct tunneling current in future high-k materials.展开更多
The MOSFET gate currents of high k gate dielectrics due to direct tunneling are investigated by using a new direct tunneling current model developed.The model includes both the inversion layer quantization effect with...The MOSFET gate currents of high k gate dielectrics due to direct tunneling are investigated by using a new direct tunneling current model developed.The model includes both the inversion layer quantization effect with finite barrier height and the polysilicon depletion effect.The impacts of dielectric constant and conduction band offset as well as the band gap on the gate current are discussed.The results indicate that the gate dielectric materials with higher dielectric constant,larger conduction band offset and the larger band gap are necessary to reduce the gate current.The calculated results can be used as a guide to select the appropriate high k gate dielectric materials for MOSFETs.展开更多
Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field ...Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field in the porous media are identified.In this work, a detailed experimental study of geoelectric field variation occurring in water migration was reported by analyzing water and grout injection processes in a simulated porous media. The spontaneous potential varies linearly with the thickness of unsaturated porous media. Very interestingly, the spontaneous potential generated in the second grout injection exhibits some"memory" of previous grouting paths. The decreases in spontaneous potential observed during grout injection is very probably due to that the spontaneous potential variations are primarily caused by electro-filtration potential, as indicated by the far larger viscosity of grout compared to that of water. The geoelectric response can be utilized to effectively identify the grouting paths in water-bearing rocks.展开更多
The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred s...The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.展开更多
It is a great challenge to develop highly active oxygen evolution reaction(OER)electrocatalysts with superior durability.In this study,a NiFe layered double hydroxidedecorated phosphide(NiFe LDH@CoP/NiP_(3))was constr...It is a great challenge to develop highly active oxygen evolution reaction(OER)electrocatalysts with superior durability.In this study,a NiFe layered double hydroxidedecorated phosphide(NiFe LDH@CoP/NiP_(3))was constructed to display satisfactory OER activity and good stability for water splitting in alkaline media.At an overpotential of 300 mV,NiFe LDH@CoP/NiP_(3) achieved a current density of 82 mA cm^(-2) for the OER,which was 9.1 and 2.3 times that of CoP/NiP_(3) and NiFe LDH,respectively.Moreover,the reconstruction behavior,during which oxyhydroxides formed,was studied by a combination of X-ray photoelectron spectroscopy,Raman spectroscopy,and scanning electron microscopy.A synergistic effect between NiFe LDH and CoP/NiP_(3) was also observed for the hydrogen evolution reaction.Furthermore,when NiFe LDH@CoP/NiP_(3) acted as both the cathode and anode for overall water splitting,a high current density of 100 mA cm^(-2) was maintained for more than 275 h.In addition,under Xe light irradiation,a solar-to-hydrogen efficiency of 9.89% was achieved for solar-driven water splitting.This work presents the coupling of different active compositions,and can provide a reference for designing bifunctional electrocatalysts.展开更多
This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed a...This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed axial compressor with a single rotor.The jet induced by the plasma actuator adds momentum to the flow in the tip region and has a significant impact on the tip-gap flow.Experiments are carried out on a low speed axial compressor with a single rotor.The static pressure is measured at both the rotor inlet and outlet.The flow coefficient and pressure rise coefficient are calculated.Then the characteristic line is acquired to show the overall performance of the compressor.With unsteady plasma actuation of 18kV and 60W the compressor stability range improvement is realized at rotor speed of 1500 r/min – 2400 r/min.展开更多
Sluggish kinetics of anodic hydrogen oxidation reaction(HOR)in alkaline media,which arises from the two orders of magnitude lower HOR activity in alkali than that in acid media for platinum group metals,hinders the co...Sluggish kinetics of anodic hydrogen oxidation reaction(HOR)in alkaline media,which arises from the two orders of magnitude lower HOR activity in alkali than that in acid media for platinum group metals,hinders the commercial implementation of anion exchange membrane fuel cells(AEMFCs).Consequently,the development of platinum-based catalysts combined with high efficiency and durability is urgently required.Herein,we report a facile route for the synthesis of ternary PtRuTe alloy nanofibers with Pt atomic ratio of only 11%via a simple galvanic replacement reaction.We optimize the adsorption strength of platinum and ruthenium towards hydrogen and hydroxyl species by regulating the electron donation from tellurium to platinum and ruthenium.Hence,the obtained trimetallic alloy catalyst exhibits an impressive kinetic current density of 30.6 mA cm^(−2)_(geo) at 50 mV and an exchange current density of 0.426 mA cm^(−2)_(metal),which shows 3.0-and 2.5-fold enhancement compared with the commercial Pt/C in alkaline electrolyte,respectively.Moreover,the catalyst also demonstrates excellent stability with merely 5%activity attenuation after 2000 potential cycles.This work offers new pathways to boost alkaline HOR by rationally designing multicomponent alloys.展开更多
The paper investigates the dynamics of a new multiple bipolar multiple Dielectric Barrier Discharges(DBD)actuator using in large-scale flow control.Particle image velocimetry experiments are performed to characteristi...The paper investigates the dynamics of a new multiple bipolar multiple Dielectric Barrier Discharges(DBD)actuator using in large-scale flow control.Particle image velocimetry experiments are performed to characteristic the effectiveness of the multiple bipolar DBD plasma actuator.The results show that the mutual interaction between the electrodes,one major disadvantage of traditional DBD characterized by reverse discharge can be entirely avoided,and a constantly accelerating electric wind velocity can be obtained by using the new multiple bipolar DBD plasma actuator.展开更多
For low power dielectric barrier discharge (DBD) used in small-size material treatment or portable devices, high- step transformer parasitic capacitance greatly influences the performance of the resonant converter a...For low power dielectric barrier discharge (DBD) used in small-size material treatment or portable devices, high- step transformer parasitic capacitance greatly influences the performance of the resonant converter as it is of the same order of magnitude as the equivalent capacitance of DBD load. In this paper, steady-state analysis of the low power DBD is presented, considering the inevitable parasitic capacitance of the high-step transformer. The rectifier-compensated first harmonic approxi- mation (RCFHA) is applied to linearize the equivalent load circuit of DBD at low frequency and the derived expressions are accurate and convenient for the analysis and design of the power supply. Based on the proposed linear equivalent load circuit, the influence of transformer parasitic capacitance on the key parameters, including the frequency range and the applied electrode voltage, is discussed when the power is regulated with pulse frequency modulation (PFM). Also, a design procedure is presented based on the derived expressions. A prototype is constructed according to the design results and the accuracy of the design is verified by experimental results.展开更多
This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. F...This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. For comparison, the actuator with widely used linear electrodes was also studied. Experiments were carried out using 2D particle image velocimetry. Particular attention was given to the flow topology, discharge phenomenon, and vortex formation mechanism. Results showed that a 2D wall jet was induced by the linear actuators, whereas the plasma actuators with serrated electrode introduced a series of streamwise vorticities, which might benefit flow control(e.g., enhancing the momentum transport in the separated boundary flow). In addition, the mechanism of 3D flow topology induced by the serrated DBD actuator was analyzed in detail.展开更多
文摘A direct tunneling model through gate dielectric s in CMOS devices in the frame of WKB approximation is reported.In the model,an im proved one-band effective mass approximation is used for the hole quantization, where valence band mixing is taken into account.By comparing to the experiments, the model is demonstrated to be applicable to both electron and hole tunneling c urrents in CMOS devices.The effect of the dispersion in oxide energy gap on the tunneling current is also studied.This model can be further extended to study th e direct tunneling current in future high-k materials.
文摘The MOSFET gate currents of high k gate dielectrics due to direct tunneling are investigated by using a new direct tunneling current model developed.The model includes both the inversion layer quantization effect with finite barrier height and the polysilicon depletion effect.The impacts of dielectric constant and conduction band offset as well as the band gap on the gate current are discussed.The results indicate that the gate dielectric materials with higher dielectric constant,larger conduction band offset and the larger band gap are necessary to reduce the gate current.The calculated results can be used as a guide to select the appropriate high k gate dielectric materials for MOSFETs.
基金Project(2013CB036003)supported by the National Basic Research,Program of ChinaProject(2010QNA54)Fundamental Research Funds for the Central Universities,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field in the porous media are identified.In this work, a detailed experimental study of geoelectric field variation occurring in water migration was reported by analyzing water and grout injection processes in a simulated porous media. The spontaneous potential varies linearly with the thickness of unsaturated porous media. Very interestingly, the spontaneous potential generated in the second grout injection exhibits some"memory" of previous grouting paths. The decreases in spontaneous potential observed during grout injection is very probably due to that the spontaneous potential variations are primarily caused by electro-filtration potential, as indicated by the far larger viscosity of grout compared to that of water. The geoelectric response can be utilized to effectively identify the grouting paths in water-bearing rocks.
基金Project(KKSY201503006)supported by Scientific Research Foundation of Kunming University of Science and Technology,ChinaProject(2014FD009)supported by the Applied Basic Research Foundation(Youth Program)of ChinaProject(51090385)supported by the National Natural Science Foundation of China
文摘The exothermic efficiency of microwave heating an electrolyte/water solution is remarkably high due to the dielectric heating by orientation polarization of water and resistance heating by the Joule process occurred simultaneously compared with pure water.A three-dimensional finite element numerical model of multi-feed microwave heating industrial liquids continuously flowing in a meter-scale circular tube is presented.The temperature field inside the applicator tube in the cavity is solved by COMSOL Multiphysics and professional programming to describe the momentum,energy and Maxwell's equations.The evaluations of the electromagnetic field,the temperature distribution and the velocity field are simulated for the fluids dynamically heated by singleand multi-feed microwave system,respectively.Both the pilot experimental investigations and numerical results of microwave with single-feed heating for fluids with different effective permittivity and flow rates show that the presented numerical modeling makes it possible to analyze dynamic process of multi-feed microwave heating the industrial liquid.The study aids in enhancing the understanding and optimizing of dynamic process in the use of multi-feed microwave heating industrial continuous flow for a variety of material properties and technical parameters.
基金financially supported by Hunan Provincial Science and Technology Plan Project(2017TP1001 and2020JJ4710)the National Key R&D Program of China(2018YFB0704100)the State Key Laboratory Fund。
文摘It is a great challenge to develop highly active oxygen evolution reaction(OER)electrocatalysts with superior durability.In this study,a NiFe layered double hydroxidedecorated phosphide(NiFe LDH@CoP/NiP_(3))was constructed to display satisfactory OER activity and good stability for water splitting in alkaline media.At an overpotential of 300 mV,NiFe LDH@CoP/NiP_(3) achieved a current density of 82 mA cm^(-2) for the OER,which was 9.1 and 2.3 times that of CoP/NiP_(3) and NiFe LDH,respectively.Moreover,the reconstruction behavior,during which oxyhydroxides formed,was studied by a combination of X-ray photoelectron spectroscopy,Raman spectroscopy,and scanning electron microscopy.A synergistic effect between NiFe LDH and CoP/NiP_(3) was also observed for the hydrogen evolution reaction.Furthermore,when NiFe LDH@CoP/NiP_(3) acted as both the cathode and anode for overall water splitting,a high current density of 100 mA cm^(-2) was maintained for more than 275 h.In addition,under Xe light irradiation,a solar-to-hydrogen efficiency of 9.89% was achieved for solar-driven water splitting.This work presents the coupling of different active compositions,and can provide a reference for designing bifunctional electrocatalysts.
基金supported by the National Natural Science Foundation of China,project No.50906085International S&T Cooperation Program of China,project No.2013DFR61080
文摘This research investigates the use of single dielectric barrier discharge(SDBD) actuators for energizing the tip leakage flow to suppress rotating stall inception and extend the stable operating range of a low speed axial compressor with a single rotor.The jet induced by the plasma actuator adds momentum to the flow in the tip region and has a significant impact on the tip-gap flow.Experiments are carried out on a low speed axial compressor with a single rotor.The static pressure is measured at both the rotor inlet and outlet.The flow coefficient and pressure rise coefficient are calculated.Then the characteristic line is acquired to show the overall performance of the compressor.With unsteady plasma actuation of 18kV and 60W the compressor stability range improvement is realized at rotor speed of 1500 r/min – 2400 r/min.
基金the National Natural Science Foundation of China(21905178)Shenzhen Science and Technology Program(JCYJ20190808143007479 and JCYJ20170818144659020).
文摘Sluggish kinetics of anodic hydrogen oxidation reaction(HOR)in alkaline media,which arises from the two orders of magnitude lower HOR activity in alkali than that in acid media for platinum group metals,hinders the commercial implementation of anion exchange membrane fuel cells(AEMFCs).Consequently,the development of platinum-based catalysts combined with high efficiency and durability is urgently required.Herein,we report a facile route for the synthesis of ternary PtRuTe alloy nanofibers with Pt atomic ratio of only 11%via a simple galvanic replacement reaction.We optimize the adsorption strength of platinum and ruthenium towards hydrogen and hydroxyl species by regulating the electron donation from tellurium to platinum and ruthenium.Hence,the obtained trimetallic alloy catalyst exhibits an impressive kinetic current density of 30.6 mA cm^(−2)_(geo) at 50 mV and an exchange current density of 0.426 mA cm^(−2)_(metal),which shows 3.0-and 2.5-fold enhancement compared with the commercial Pt/C in alkaline electrolyte,respectively.Moreover,the catalyst also demonstrates excellent stability with merely 5%activity attenuation after 2000 potential cycles.This work offers new pathways to boost alkaline HOR by rationally designing multicomponent alloys.
文摘The paper investigates the dynamics of a new multiple bipolar multiple Dielectric Barrier Discharges(DBD)actuator using in large-scale flow control.Particle image velocimetry experiments are performed to characteristic the effectiveness of the multiple bipolar DBD plasma actuator.The results show that the mutual interaction between the electrodes,one major disadvantage of traditional DBD characterized by reverse discharge can be entirely avoided,and a constantly accelerating electric wind velocity can be obtained by using the new multiple bipolar DBD plasma actuator.
基金supported by the National Natural Science Foundation of China(No.51107115)the China Postdoctoral Science Foundation(No.20110491766)
文摘For low power dielectric barrier discharge (DBD) used in small-size material treatment or portable devices, high- step transformer parasitic capacitance greatly influences the performance of the resonant converter as it is of the same order of magnitude as the equivalent capacitance of DBD load. In this paper, steady-state analysis of the low power DBD is presented, considering the inevitable parasitic capacitance of the high-step transformer. The rectifier-compensated first harmonic approxi- mation (RCFHA) is applied to linearize the equivalent load circuit of DBD at low frequency and the derived expressions are accurate and convenient for the analysis and design of the power supply. Based on the proposed linear equivalent load circuit, the influence of transformer parasitic capacitance on the key parameters, including the frequency range and the applied electrode voltage, is discussed when the power is regulated with pulse frequency modulation (PFM). Also, a design procedure is presented based on the derived expressions. A prototype is constructed according to the design results and the accuracy of the design is verified by experimental results.
基金supported by the National Natural Science Foundation of China (51222606)
文摘This paper presents an experimental investigation on flow field induced by a dielectric barrier discharge(DBD) plasma actuator with serrated electrodes in still air to further improve its flow control effectiveness. For comparison, the actuator with widely used linear electrodes was also studied. Experiments were carried out using 2D particle image velocimetry. Particular attention was given to the flow topology, discharge phenomenon, and vortex formation mechanism. Results showed that a 2D wall jet was induced by the linear actuators, whereas the plasma actuators with serrated electrode introduced a series of streamwise vorticities, which might benefit flow control(e.g., enhancing the momentum transport in the separated boundary flow). In addition, the mechanism of 3D flow topology induced by the serrated DBD actuator was analyzed in detail.