Special solution of the (2+1)-dimensional Sawada Kotera equation is decomposed into three (0+1)- dimensional Bargmann flows. They are straightened out on the Jacobi variety of the associated hyperelliptic curve....Special solution of the (2+1)-dimensional Sawada Kotera equation is decomposed into three (0+1)- dimensional Bargmann flows. They are straightened out on the Jacobi variety of the associated hyperelliptic curve. Explicit algebraic-geometric solution is obtained on the basis of a deeper understanding of the KdV hierarchy.展开更多
基金The project supported by the Special Funds for Major State Basic Research Project under Grant No.G2000077301
文摘Special solution of the (2+1)-dimensional Sawada Kotera equation is decomposed into three (0+1)- dimensional Bargmann flows. They are straightened out on the Jacobi variety of the associated hyperelliptic curve. Explicit algebraic-geometric solution is obtained on the basis of a deeper understanding of the KdV hierarchy.