期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于代价敏感思想和自适应增强集成的SVM多分类算法
1
作者 何旭 席佩瑶 辛云宏 《微型电脑应用》 2023年第9期1-3,共3页
针对数据识别分类在传统的支持向量机(SVM)个体分类器上正确识别率不理想的问题,提出一种基于代价敏感思想(cost-sensitive)和自适应增强(AdaBoost)的SVM集成数据分类算法(CAB-SVM)。在自适应增强算法每次迭代训练SVM弱分类器之前,根据... 针对数据识别分类在传统的支持向量机(SVM)个体分类器上正确识别率不理想的问题,提出一种基于代价敏感思想(cost-sensitive)和自适应增强(AdaBoost)的SVM集成数据分类算法(CAB-SVM)。在自适应增强算法每次迭代训练SVM弱分类器之前,根据样本总数设置初始样本权值,并抽取样本组成临时训练集训练SVM弱分类器。其中在权重迭代更新阶段,赋予被分错样本更高的误分代价,使得被分错样本权重增加更快,有效地减少了算法迭代次数。同时,算法迭代过程极大地优化了个体分类器的识别鲁棒性能,使得提出的CAB-SVM算法获得了更优越的数据分类性能。利用UCI数据样本集的实验结果表明CAB-SVM分类算法的正确识别率高于SVM和SVME算法。 展开更多
关键词 支持向量机 自适应增强算法 代价敏感思想 数据识别分类
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部