针对于类不平衡的偏标记学习问题,在PL-KNN算法的基础上,提出一种可以较有效处理类不平衡问题的偏标记K近邻学习算法(K-nearest neighbor algorithm for class imbalanced partial label learning,IM-PLKNN),利用Parzen窗估计法在样本...针对于类不平衡的偏标记学习问题,在PL-KNN算法的基础上,提出一种可以较有效处理类不平衡问题的偏标记K近邻学习算法(K-nearest neighbor algorithm for class imbalanced partial label learning,IM-PLKNN),利用Parzen窗估计法在样本的不同类别的近邻上设置不同的权重,使多数类样本权重降低,让属于少数类样本的近邻具有更高的权重,降低将少数类样本误测为多数类样本的概率,提高对少数类样本的识别精度。试验结果表明,IM-PLKNN算法较PL-KNN算法在不同评价指标上均有显著提高,特别是对少数类样本的识别精度有大幅度提高。IM-PLKNN算法可以有效提高类不平衡的偏标记K近邻学习算法对数据集整体的预测性能。展开更多
文摘针对于类不平衡的偏标记学习问题,在PL-KNN算法的基础上,提出一种可以较有效处理类不平衡问题的偏标记K近邻学习算法(K-nearest neighbor algorithm for class imbalanced partial label learning,IM-PLKNN),利用Parzen窗估计法在样本的不同类别的近邻上设置不同的权重,使多数类样本权重降低,让属于少数类样本的近邻具有更高的权重,降低将少数类样本误测为多数类样本的概率,提高对少数类样本的识别精度。试验结果表明,IM-PLKNN算法较PL-KNN算法在不同评价指标上均有显著提高,特别是对少数类样本的识别精度有大幅度提高。IM-PLKNN算法可以有效提高类不平衡的偏标记K近邻学习算法对数据集整体的预测性能。