期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
代价敏感Boosting算法研究 被引量:3
1
作者 李秋洁 茅耀斌 +1 位作者 叶曙光 王执铨 《南京理工大学学报》 EI CAS CSCD 北大核心 2013年第1期19-24,31,共7页
针对代价敏感学习问题,研究boosting算法的代价敏感扩展。提出一种基于代价敏感采样的代价敏感boosting学习方法,通过在原始boosting每轮迭代中引入代价敏感采样,最小化代价敏感损失期望。基于上述学习框架,推导出两种代价敏感boosting... 针对代价敏感学习问题,研究boosting算法的代价敏感扩展。提出一种基于代价敏感采样的代价敏感boosting学习方法,通过在原始boosting每轮迭代中引入代价敏感采样,最小化代价敏感损失期望。基于上述学习框架,推导出两种代价敏感boosting算法,同时,揭示并解释已有算法的不稳定本质。在加州大学欧文分校(University of California,Irvine,UCI)数据集和麻省理工学院生物和计算学习中心(Center for Biological&Computational Learning,CBCL)人脸数据集上的实验结果表明,对于代价敏感分类问题,代价敏感采样boosting算法优于原始boosting和已有代价敏感boosting算法。 展开更多
关键词 BOOSTING 代价敏感boosting 代价敏感学习 代价敏感采样
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部